cleanup
This commit is contained in:
parent
7733de01d2
commit
151343b7bd
@ -51,11 +51,8 @@ class network:
|
|||||||
self.activations.append(_input)
|
self.activations.append(_input)
|
||||||
|
|
||||||
#activation function application
|
#activation function application
|
||||||
#for i in range(len(_input)):
|
|
||||||
# _input[i] = network.__sigmoid(_input)
|
|
||||||
_input = network.__sigmoid(_input)
|
_input = network.__sigmoid(_input)
|
||||||
|
|
||||||
#On peut comparer la performance si on recalcul plus tard
|
|
||||||
if (__storeValues):
|
if (__storeValues):
|
||||||
self.outputs.append(_input)
|
self.outputs.append(_input)
|
||||||
|
|
||||||
@ -110,18 +107,14 @@ class network:
|
|||||||
errorSumsBiases = [np.zeros(layer.shape) for layer in self.biases]
|
errorSumsBiases = [np.zeros(layer.shape) for layer in self.biases]
|
||||||
self.__errors = [np.zeros(len(layer)) for layer in self.weights]
|
self.__errors = [np.zeros(len(layer)) for layer in self.weights]
|
||||||
|
|
||||||
#rempli self.activations et self.outputs
|
#Rempli self.activations et self.outputs
|
||||||
self.process(_input, True)
|
self.process(_input, True)
|
||||||
|
|
||||||
self.__desiredOutput = desiredOutput
|
self.__desiredOutput = desiredOutput
|
||||||
|
|
||||||
#A optimiser
|
|
||||||
for layerNumber in range(len(errorSumsWeights)-1, -1, -1):
|
for layerNumber in range(len(errorSumsWeights)-1, -1, -1):
|
||||||
for neuronNumber in range(len(errorSumsWeights[layerNumber])):
|
for neuronNumber in range(len(errorSumsWeights[layerNumber])):
|
||||||
errorSumsBiases[layerNumber][neuronNumber] += self.__Error(layerNumber, neuronNumber)
|
errorSumsBiases[layerNumber][neuronNumber] += self.__Error(layerNumber, neuronNumber)
|
||||||
#for weightNumber in range(len(errorSumsWeights[layerNumber][neuronNumber])):
|
|
||||||
#print("layer : " + str(layerNumber) + " neuron : " + str(neuronNumber) + " weight : " + str(weightNumber))
|
|
||||||
#errorSumsWeights[layerNumber][neuronNumber][weightNumber] += self.__PartialDerivative(layerNumber, neuronNumber, weightNumber)
|
|
||||||
#errorSumsWeights[layerNumber][neuronNumber][weightNumber] = errorSumsBiases[layerNumber][neuronNumber] * self.outputs[layerNumber][weightNumber]
|
|
||||||
errorSumsWeights[layerNumber][neuronNumber] = np.dot(errorSumsBiases[layerNumber][neuronNumber],self.outputs[layerNumber])
|
errorSumsWeights[layerNumber][neuronNumber] = np.dot(errorSumsBiases[layerNumber][neuronNumber],self.outputs[layerNumber])
|
||||||
|
|
||||||
total = 0
|
total = 0
|
||||||
@ -133,27 +126,6 @@ class network:
|
|||||||
errorSumsBiases[layerNumber] = np.multiply(errorSumsBiases[layerNumber], -(learningRate/len(inputBatch)))
|
errorSumsBiases[layerNumber] = np.multiply(errorSumsBiases[layerNumber], -(learningRate/len(inputBatch)))
|
||||||
self.biases[layerNumber] = np.add(self.biases[layerNumber], errorSumsBiases[layerNumber])
|
self.biases[layerNumber] = np.add(self.biases[layerNumber], errorSumsBiases[layerNumber])
|
||||||
|
|
||||||
#print(self.__biases)
|
|
||||||
"""
|
|
||||||
|
|
||||||
for layerNumber in range(len(errorSumsWeights)):
|
|
||||||
for neuronNumber in range(len(errorSumsWeights[layerNumber])):
|
|
||||||
|
|
||||||
errorSumsBiases[layerNumber][neuronNumber] = errorSumsBiases[layerNumber][neuronNumber] / len(inputBatch)
|
|
||||||
total += errorSumsBiases[layerNumber][neuronNumber]
|
|
||||||
self.biases[layerNumber][neuronNumber] -= learningRate * errorSumsBiases[layerNumber][neuronNumber]
|
|
||||||
|
|
||||||
for weightNumber in range(len(errorSumsWeights[layerNumber][neuronNumber])):
|
|
||||||
|
|
||||||
#Probablement faisable avec une multiplication de matrices
|
|
||||||
errorSumsWeights[layerNumber][neuronNumber][weightNumber] = errorSumsWeights[layerNumber][neuronNumber][weightNumber] / len(inputBatch)
|
|
||||||
|
|
||||||
#total += errorSumsWeights[layerNumber][neuronNumber][weightNumber]
|
|
||||||
|
|
||||||
#Probablement faisable avec une somme de matrices
|
|
||||||
self.weights[layerNumber][neuronNumber][weightNumber] -= learningRate * errorSumsWeights[layerNumber][neuronNumber][weightNumber]
|
|
||||||
|
|
||||||
#print("Error : " + str(total))"""
|
|
||||||
if (visualize):
|
if (visualize):
|
||||||
ani = animation.ArtistAnimation(fig, vizualisationData, interval=100)
|
ani = animation.ArtistAnimation(fig, vizualisationData, interval=100)
|
||||||
plt.show()
|
plt.show()
|
||||||
@ -172,9 +144,6 @@ class network:
|
|||||||
upperLayerLinksSum += self.weights[layer+1][upperLayerNeuron][neuron] * self.__errors[layer+1][upperLayerNeuron]
|
upperLayerLinksSum += self.weights[layer+1][upperLayerNeuron][neuron] * self.__errors[layer+1][upperLayerNeuron]
|
||||||
return network.__sigmoid(self.activations[layer][neuron], derivative=True) * upperLayerLinksSum
|
return network.__sigmoid(self.activations[layer][neuron], derivative=True) * upperLayerLinksSum
|
||||||
|
|
||||||
#def __PartialDerivative(self, layer, neuron, weight):
|
|
||||||
# return self.__Error(layer, neuron) * self.outputs[layer][weight]
|
|
||||||
|
|
||||||
def accuracy(self, inputs, desiredOutputs):
|
def accuracy(self, inputs, desiredOutputs):
|
||||||
if (type(inputs) != list or type(desiredOutputs) != list):
|
if (type(inputs) != list or type(desiredOutputs) != list):
|
||||||
raise TypeError("The inputs and desired outputs must be lists of numpy arrays !")
|
raise TypeError("The inputs and desired outputs must be lists of numpy arrays !")
|
||||||
|
14
test.py
14
test.py
@ -1,14 +0,0 @@
|
|||||||
import numpy as np
|
|
||||||
from sobek.network import network
|
|
||||||
|
|
||||||
test = network(16, 16, 8, 4)
|
|
||||||
"""
|
|
||||||
for y in test.weights:
|
|
||||||
print(y, end="\n\n")
|
|
||||||
|
|
||||||
for y in test.biases:
|
|
||||||
print(y, end="\n\n")"""
|
|
||||||
|
|
||||||
#print(network.__reLu(8))
|
|
||||||
|
|
||||||
print(test.process(np.random.default_rng(42).random((16))))
|
|
@ -1,7 +1,11 @@
|
|||||||
import tkinter
|
import tkinter
|
||||||
from PIL import Image, ImageDraw
|
from PIL import Image, ImageDraw
|
||||||
from sobek.network import network
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
from sys import path
|
||||||
|
path.insert(1, "..")
|
||||||
|
from sobek.network import network
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
class Sketchpad(tkinter.Canvas):
|
class Sketchpad(tkinter.Canvas):
|
||||||
def __init__(self, parent, predictionLabel, **kwargs, ):
|
def __init__(self, parent, predictionLabel, **kwargs, ):
|
@ -1,7 +1,10 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from sobek.network import network
|
|
||||||
import gzip
|
import gzip
|
||||||
import time
|
import time
|
||||||
|
from sys import path
|
||||||
|
path.insert(1, "..")
|
||||||
|
from sobek.network import network
|
||||||
|
|
||||||
|
|
||||||
print("--- Data loading ---")
|
print("--- Data loading ---")
|
||||||
|
|
@ -1,6 +1,8 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from sobek.network import network
|
|
||||||
import gzip
|
import gzip
|
||||||
|
from sys import path
|
||||||
|
path.insert(1, "..")
|
||||||
|
from sobek.network import network
|
||||||
|
|
||||||
print("--- Data loading ---")
|
print("--- Data loading ---")
|
||||||
|
|
@ -1,5 +1,7 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import random
|
import random
|
||||||
|
from sys import path
|
||||||
|
path.insert(1, "..")
|
||||||
from sobek.network import network
|
from sobek.network import network
|
||||||
|
|
||||||
random.seed()
|
random.seed()
|
@ -1,7 +1,9 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import random
|
import random
|
||||||
from sobek.network import network
|
|
||||||
import time
|
import time
|
||||||
|
from sys import path
|
||||||
|
path.insert(1, "..")
|
||||||
|
from sobek.network import network
|
||||||
|
|
||||||
random.seed()
|
random.seed()
|
||||||
|
|
||||||
@ -33,20 +35,12 @@ for i in range(nbRep):
|
|||||||
|
|
||||||
startTime = time.perf_counter()
|
startTime = time.perf_counter()
|
||||||
|
|
||||||
#for j in range(10000):
|
|
||||||
# inputs = []
|
|
||||||
# desiredOutputs = []
|
|
||||||
|
|
||||||
#if (j%1000 == 0):
|
|
||||||
# print(j)
|
|
||||||
|
|
||||||
# myNetwork.train(test, result, learningRate)
|
|
||||||
|
|
||||||
myNetwork.train(test, result, learningRate, len(test), 10000, visualize=False)
|
myNetwork.train(test, result, learningRate, len(test), 10000, visualize=False)
|
||||||
|
|
||||||
endTime = time.perf_counter()
|
endTime = time.perf_counter()
|
||||||
learningTime += endTime - startTime
|
learningTime += endTime - startTime
|
||||||
learningTime = learningTime / nbRep
|
learningTime = learningTime / nbRep
|
||||||
|
|
||||||
test = []
|
test = []
|
||||||
result = []
|
result = []
|
||||||
test.append(np.zeros(2))
|
test.append(np.zeros(2))
|
@ -1,5 +1,6 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import random
|
from sys import path
|
||||||
|
path.insert(1, "..")
|
||||||
from sobek.network import network
|
from sobek.network import network
|
||||||
|
|
||||||
myNetwork = network(2, 1)
|
myNetwork = network(2, 1)
|
Loading…
Reference in New Issue
Block a user