Jalon 2 complete
This commit is contained in:
160
sobek/network.py
160
sobek/network.py
@@ -1,4 +1,8 @@
|
||||
import random
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.animation as animation
|
||||
import pickle
|
||||
|
||||
class network:
|
||||
|
||||
@@ -26,9 +30,9 @@ class network:
|
||||
|
||||
def process(self, _input, __storeValues=False):
|
||||
if type(_input) != np.ndarray:
|
||||
raise TypeError("The input must be a vector!")
|
||||
raise TypeError("The input must be a numpy array!")
|
||||
if _input.size != self.__inputLayerSize:
|
||||
raise ValueError("The input vector has the wrong size!")
|
||||
raise ValueError("The input vector has the wrong size! " + str(_input.size) + " != " + str(self.__inputLayerSize))
|
||||
if _input.dtype != np.float64:
|
||||
print(_input.dtype)
|
||||
raise TypeError("The input vector must contain floats!")
|
||||
@@ -59,58 +63,100 @@ class network:
|
||||
|
||||
|
||||
|
||||
def train(self, inputs, desiredOutputs, learningRate):
|
||||
def train(self, inputs, desiredOutputs, learningRate, batchSize, epochs=1, visualize=False):
|
||||
if (type(inputs) != list or type(desiredOutputs) != list):
|
||||
raise TypeError("The inputs and desired outputs must be lists of numpy arrays !")
|
||||
if (len(inputs) != len(desiredOutputs)):
|
||||
raise ValueError("The inputs and desired outputs vectors must have the same amount of data !")
|
||||
raise ValueError("The inputs and desired outputs lists must have the same amount of data ! " + str(len(inputs)) + " != " + str(len(desiredOutputs)))
|
||||
if (len(inputs) == 0):
|
||||
raise ValueError("The list is empty !")
|
||||
if (visualize == False):
|
||||
if (self.__inputLayerSize != 2):
|
||||
raise ValueError("Visualization is only possible for 2 inputs networks")
|
||||
if (len(self.weights[-1]) != 1):
|
||||
raise ValueError("Visualization is only possible for 1 output networks")
|
||||
|
||||
for _input, desiredOutput in zip(inputs, desiredOutputs):
|
||||
errorSumsWeights = []
|
||||
errorSumsBiases = []
|
||||
|
||||
errorSumsWeights = [np.zeros(layer.shape) for layer in self.weights]
|
||||
errorSumsBiases = [np.zeros(layer.shape) for layer in self.biases]
|
||||
self.__errors = [np.zeros(len(layer)) for layer in self.weights]
|
||||
if (visualize):
|
||||
vizualisationData = []
|
||||
fig, graph = plt.subplots()
|
||||
|
||||
#rempli self.activations et self.outputs
|
||||
self.process(_input, True)
|
||||
self.__desiredOutput = desiredOutput
|
||||
for epoch in range(epochs):
|
||||
randomState = random.getstate()
|
||||
|
||||
#Somme de matrice ?
|
||||
for layerNumber in range(len(errorSumsWeights)-1, -1, -1):
|
||||
for neuronNumber in range(len(errorSumsWeights[layerNumber])):
|
||||
errorSumsBiases[layerNumber][neuronNumber] += self.__Error(layerNumber, neuronNumber)
|
||||
for weightNumber in range(len(errorSumsWeights[layerNumber][neuronNumber])):
|
||||
#print("layer : " + str(layerNumber) + " neuron : " + str(neuronNumber) + " weight : " + str(weightNumber))
|
||||
errorSumsWeights[layerNumber][neuronNumber][weightNumber] += self.__PartialDerivative(layerNumber, neuronNumber, weightNumber)
|
||||
random.shuffle(inputs)
|
||||
|
||||
total = 0
|
||||
|
||||
|
||||
errorSumsWeights = np.multiply(errorSumsWeights, -(learningRate/len(inputs)))
|
||||
self.weights = np.add(self.weights, errorSumsWeights)
|
||||
random.setstate(randomState)
|
||||
|
||||
errorSumsBiases = np.multiply(errorSumsBiases, -(learningRate/len(inputs)))
|
||||
self.biases = np.add(self.biases, errorSumsBiases)
|
||||
random.shuffle(desiredOutputs)
|
||||
|
||||
#print(self.__biases)
|
||||
|
||||
"""
|
||||
for layerNumber in range(len(errorSumsWeights)):
|
||||
for neuronNumber in range(len(errorSumsWeights[layerNumber])):
|
||||
if (visualize and epoch%10 == 0):
|
||||
vizualisationFrame = np.empty((30, 30))
|
||||
for x in range(30):
|
||||
for y in range(30):
|
||||
vizualisationFrame[x][y] = self.process(np.array([float(x), float(y)]))
|
||||
vizualisationData.append([graph.imshow(vizualisationFrame, animated=True)])
|
||||
|
||||
errorSumsBiases[layerNumber][neuronNumber] = errorSumsBiases[layerNumber][neuronNumber] / len(inputs)
|
||||
total += errorSumsBiases[layerNumber][neuronNumber]
|
||||
self.biases[layerNumber][neuronNumber] -= learningRate * errorSumsBiases[layerNumber][neuronNumber]
|
||||
inputBatches = [inputs[j:j+batchSize] for j in range(0, len(inputs), batchSize)]
|
||||
desiredOutputsBatches = [desiredOutputs[j:j+batchSize] for j in range(0, len(inputs), batchSize)]
|
||||
|
||||
for inputBatch, desiredOutputsBatch in zip(inputBatches, desiredOutputsBatches):
|
||||
|
||||
for weightNumber in range(len(errorSumsWeights[layerNumber][neuronNumber])):
|
||||
for _input, desiredOutput in zip(inputBatch, desiredOutputsBatch):
|
||||
|
||||
#Probablement faisable avec une multiplication de matrices
|
||||
errorSumsWeights[layerNumber][neuronNumber][weightNumber] = errorSumsWeights[layerNumber][neuronNumber][weightNumber] / len(inputs)
|
||||
|
||||
total += errorSumsWeights[layerNumber][neuronNumber][weightNumber]
|
||||
errorSumsWeights = [np.zeros(layer.shape) for layer in self.weights]
|
||||
errorSumsBiases = [np.zeros(layer.shape) for layer in self.biases]
|
||||
self.__errors = [np.zeros(len(layer)) for layer in self.weights]
|
||||
|
||||
#Probablement faisable avec une somme de matrices
|
||||
self.weights[layerNumber][neuronNumber][weightNumber] -= learningRate * errorSumsWeights[layerNumber][neuronNumber][weightNumber]
|
||||
#rempli self.activations et self.outputs
|
||||
self.process(_input, True)
|
||||
self.__desiredOutput = desiredOutput
|
||||
|
||||
#print("Error : " + str(total))"""
|
||||
#A optimiser
|
||||
for layerNumber in range(len(errorSumsWeights)-1, -1, -1):
|
||||
for neuronNumber in range(len(errorSumsWeights[layerNumber])):
|
||||
errorSumsBiases[layerNumber][neuronNumber] += self.__Error(layerNumber, neuronNumber)
|
||||
#for weightNumber in range(len(errorSumsWeights[layerNumber][neuronNumber])):
|
||||
#print("layer : " + str(layerNumber) + " neuron : " + str(neuronNumber) + " weight : " + str(weightNumber))
|
||||
#errorSumsWeights[layerNumber][neuronNumber][weightNumber] += self.__PartialDerivative(layerNumber, neuronNumber, weightNumber)
|
||||
#errorSumsWeights[layerNumber][neuronNumber][weightNumber] = errorSumsBiases[layerNumber][neuronNumber] * self.outputs[layerNumber][weightNumber]
|
||||
errorSumsWeights[layerNumber][neuronNumber] = np.dot(errorSumsBiases[layerNumber][neuronNumber],self.outputs[layerNumber])
|
||||
|
||||
total = 0
|
||||
|
||||
for layerNumber in range(len(errorSumsWeights)):
|
||||
errorSumsWeights[layerNumber] = np.multiply(errorSumsWeights[layerNumber], -(learningRate/len(inputBatch)))
|
||||
self.weights[layerNumber] = np.add(self.weights[layerNumber], errorSumsWeights[layerNumber])
|
||||
|
||||
errorSumsBiases[layerNumber] = np.multiply(errorSumsBiases[layerNumber], -(learningRate/len(inputBatch)))
|
||||
self.biases[layerNumber] = np.add(self.biases[layerNumber], errorSumsBiases[layerNumber])
|
||||
|
||||
#print(self.__biases)
|
||||
"""
|
||||
|
||||
for layerNumber in range(len(errorSumsWeights)):
|
||||
for neuronNumber in range(len(errorSumsWeights[layerNumber])):
|
||||
|
||||
errorSumsBiases[layerNumber][neuronNumber] = errorSumsBiases[layerNumber][neuronNumber] / len(inputBatch)
|
||||
total += errorSumsBiases[layerNumber][neuronNumber]
|
||||
self.biases[layerNumber][neuronNumber] -= learningRate * errorSumsBiases[layerNumber][neuronNumber]
|
||||
|
||||
for weightNumber in range(len(errorSumsWeights[layerNumber][neuronNumber])):
|
||||
|
||||
#Probablement faisable avec une multiplication de matrices
|
||||
errorSumsWeights[layerNumber][neuronNumber][weightNumber] = errorSumsWeights[layerNumber][neuronNumber][weightNumber] / len(inputBatch)
|
||||
|
||||
#total += errorSumsWeights[layerNumber][neuronNumber][weightNumber]
|
||||
|
||||
#Probablement faisable avec une somme de matrices
|
||||
self.weights[layerNumber][neuronNumber][weightNumber] -= learningRate * errorSumsWeights[layerNumber][neuronNumber][weightNumber]
|
||||
|
||||
#print("Error : " + str(total))"""
|
||||
if (visualize):
|
||||
ani = animation.ArtistAnimation(fig, vizualisationData, interval=100)
|
||||
plt.show()
|
||||
|
||||
def __Error(self, layer, neuron):
|
||||
if (self.__errors[layer][neuron] == 0 ):
|
||||
@@ -122,20 +168,38 @@ class network:
|
||||
|
||||
def __ErrorHiddenLayer(self, layer, neuron):
|
||||
upperLayerLinksSum = 0
|
||||
#Probablement faisable avec une multiplication de matrices
|
||||
for upperLayerNeuron in range(len(self.weights[layer+1])):
|
||||
upperLayerLinksSum += self.weights[layer+1][upperLayerNeuron][neuron] * self.__errors[layer+1][upperLayerNeuron]
|
||||
return network.__sigmoid(self.activations[layer][neuron], derivative=True) * upperLayerLinksSum
|
||||
|
||||
def __PartialDerivative(self, layer, neuron, weight):
|
||||
return self.__Error(layer, neuron) * self.outputs[layer][weight]
|
||||
#def __PartialDerivative(self, layer, neuron, weight):
|
||||
# return self.__Error(layer, neuron) * self.outputs[layer][weight]
|
||||
|
||||
def accuracy(self, inputs, desiredOutputs):
|
||||
if (type(inputs) != list or type(desiredOutputs) != list):
|
||||
raise TypeError("The inputs and desired outputs must be lists of numpy arrays !")
|
||||
if (len(inputs) != len(desiredOutputs)):
|
||||
raise ValueError("The inputs and desired outputs lists must have the same amount of data !")
|
||||
if (len(inputs) == 0):
|
||||
raise ValueError("The list is empty !")
|
||||
sum = 0
|
||||
for i in range(len(desiredOutputs)):
|
||||
if (np.argmax(desiredOutputs[i]) == np.argmax(self.process(inputs[i]))):
|
||||
sum += 1
|
||||
return sum/len(desiredOutputs)
|
||||
|
||||
|
||||
def saveToFile(self, fileName):
|
||||
np.savez(fileName, biases=self.biases, weights=self.weights)
|
||||
with open(fileName, "wb") as file:
|
||||
pickle.dump(self, file)
|
||||
|
||||
def loadFromFile(self, fileName):
|
||||
data = np.load(fileName)
|
||||
self.biases = data['biases']
|
||||
self.weights = data['weights']
|
||||
with open(fileName, "rb") as file:
|
||||
fromNetwork = pickle.load(file)
|
||||
self.weights = fromNetwork.weights
|
||||
self.biases = fromNetwork.biases
|
||||
self.__inputLayerSize = fromNetwork.__inputLayerSize
|
||||
|
||||
def networkFromFile(fileName):
|
||||
with open(fileName, "rb") as file:
|
||||
return pickle.load(file)
|
Reference in New Issue
Block a user