Reseau neuronal basique fonctionnel
This commit is contained in:
parent
c0a705ffb9
commit
dd47f73356
@ -1,5 +1,4 @@
|
||||
import numpy as np
|
||||
import math
|
||||
|
||||
class network:
|
||||
|
||||
@ -7,71 +6,71 @@ class network:
|
||||
if type(inputLayerSize) != int:
|
||||
raise TypeError("The input layer size must be an int!")
|
||||
|
||||
self.__weights = []
|
||||
self.weights = []
|
||||
self.__inputLayerSize = inputLayerSize
|
||||
oldLayerSize = inputLayerSize
|
||||
for layerSize in layerSizes:
|
||||
self.__weights.append( np.random.random((layerSize, oldLayerSize)) )
|
||||
self.weights.append( np.random.randn(layerSize, oldLayerSize) )
|
||||
oldLayerSize = layerSize
|
||||
self.__biases = [[0]*layerSize for layerSize in layerSizes]
|
||||
self.__weights = np.array(self.__weights, dtype=object)
|
||||
self.__biases = np.array(self.__biases, dtype=object)
|
||||
self.biases = [np.random.randn(layerSize) for layerSize in layerSizes]
|
||||
|
||||
def __reLu(value, derivative=False):
|
||||
if (derivative):
|
||||
return 0 if (value == 0) else 1
|
||||
return 0 if (value < 0) else 1
|
||||
return max(0, value)
|
||||
|
||||
def __sigmoid(value, derivative=False):
|
||||
if (derivative):
|
||||
return network.__sigmoid(value) * (1 - network.__sigmoid(value))
|
||||
return 1/(1+math.exp(-value))
|
||||
return 1.0/(1.0+np.exp(-value))
|
||||
|
||||
def process(self, _input, __storeValues=False):
|
||||
if type(_input) != np.ndarray:
|
||||
raise TypeError("The input must be a vector!")
|
||||
if _input.size != self.__inputLayerSize:
|
||||
raise ValueError("The input vector has the wrong size!")
|
||||
#if _input.dtype != np.float64:
|
||||
# raise TypeError("The input vector must contain floats!")
|
||||
if _input.dtype != np.float64:
|
||||
print(_input.dtype)
|
||||
raise TypeError("The input vector must contain floats!")
|
||||
|
||||
if (__storeValues):
|
||||
self.activations = []
|
||||
self.outputs = []
|
||||
self.outputs.append(_input)
|
||||
|
||||
for layerWeights, bias in zip(self.__weights, self.__biases):
|
||||
for layerWeights, layerBias in zip(self.weights, self.biases):
|
||||
|
||||
_input = np.matmul(layerWeights, _input)
|
||||
_input = np.add(_input, bias)
|
||||
_input = np.dot(layerWeights, _input)
|
||||
_input = np.add(_input, layerBias)
|
||||
|
||||
if (__storeValues):
|
||||
self.activations.append(_input.copy())
|
||||
if (__storeValues):
|
||||
self.activations.append(_input)
|
||||
|
||||
#activation function application
|
||||
for neuron in range(len(_input)):
|
||||
_input[neuron] = network.__sigmoid(_input[neuron])
|
||||
#for i in range(len(_input)):
|
||||
# _input[i] = network.__sigmoid(_input)
|
||||
_input = network.__sigmoid(_input)
|
||||
|
||||
#On peut comparer la performance si on recalcul plus tard
|
||||
if (__storeValues):
|
||||
self.outputs.append(_input.copy())
|
||||
if (__storeValues):
|
||||
self.outputs.append(_input)
|
||||
|
||||
self.activations = np.array(self.activations, dtype=object)
|
||||
self.outputs = np.array(self.outputs, dtype=object)
|
||||
|
||||
return _input
|
||||
|
||||
|
||||
|
||||
def train(self, inputs, desiredOutputs, learningRate):
|
||||
errorSumsWeights = [[[0]*len(neuron) for neuron in layer] for layer in self.__weights]
|
||||
errorSumsBiases = [[0]*len(layer) for layer in self.__biases]
|
||||
self.__errors = [[0]*len(layer) for layer in self.__weights]
|
||||
if (len(inputs) != len(desiredOutputs)):
|
||||
raise ValueError("The inputs and desired outputs vectors must have the same amount of data !")
|
||||
|
||||
for _input, desiredOutput in zip(inputs, desiredOutputs):
|
||||
|
||||
#rempli self.activations et self.outputs
|
||||
self.__output = self.process(_input, True)
|
||||
errorSumsWeights = [np.zeros(layer.shape) for layer in self.weights]
|
||||
errorSumsBiases = [np.zeros(layer.shape) for layer in self.biases]
|
||||
self.__errors = [np.zeros(len(layer)) for layer in self.weights]
|
||||
|
||||
#rempli self.activations et self.outputs
|
||||
self.process(_input, True)
|
||||
self.__desiredOutput = desiredOutput
|
||||
|
||||
#Somme de matrice ?
|
||||
@ -83,18 +82,24 @@ class network:
|
||||
errorSumsWeights[layerNumber][neuronNumber][weightNumber] += self.__PartialDerivative(layerNumber, neuronNumber, weightNumber)
|
||||
|
||||
total = 0
|
||||
|
||||
|
||||
|
||||
errorSumsWeights = np.multiply(errorSumsWeights, -(learningRate/len(inputs)))
|
||||
self.__weights = np.add(self.__weights, errorSumsWeights)
|
||||
self.weights = np.add(self.weights, errorSumsWeights)
|
||||
|
||||
errorSumsBiases = np.multiply(errorSumsBiases, -(learningRate/len(inputs)))
|
||||
self.__biases = np.add(self.__biases, errorSumsBiases)
|
||||
self.biases = np.add(self.biases, errorSumsBiases)
|
||||
|
||||
print(self.__biases)
|
||||
#print(self.__biases)
|
||||
|
||||
"""
|
||||
for layerNumber in range(len(errorSumsWeights)):
|
||||
for neuronNumber in range(len(errorSumsWeights[layerNumber])):
|
||||
|
||||
errorSumsBiases[layerNumber][neuronNumber] = errorSumsBiases[layerNumber][neuronNumber] / len(inputs)
|
||||
total += errorSumsBiases[layerNumber][neuronNumber]
|
||||
self.biases[layerNumber][neuronNumber] -= learningRate * errorSumsBiases[layerNumber][neuronNumber]
|
||||
|
||||
for weightNumber in range(len(errorSumsWeights[layerNumber][neuronNumber])):
|
||||
|
||||
#Probablement faisable avec une multiplication de matrices
|
||||
@ -103,24 +108,24 @@ class network:
|
||||
total += errorSumsWeights[layerNumber][neuronNumber][weightNumber]
|
||||
|
||||
#Probablement faisable avec une somme de matrices
|
||||
self.__weights[layerNumber][neuronNumber][weightNumber] -= learningRate * errorSumsWeights[layerNumber][neuronNumber][weightNumber]
|
||||
self.weights[layerNumber][neuronNumber][weightNumber] -= learningRate * errorSumsWeights[layerNumber][neuronNumber][weightNumber]
|
||||
|
||||
print("Error : " + str(total))"""
|
||||
#print("Error : " + str(total))"""
|
||||
|
||||
def __Error(self, layer, neuron):
|
||||
if (self.__errors[layer][neuron] == 0 ):
|
||||
self.__errors[layer][neuron] = self.__ErrorFinalLayer(neuron) if (layer == len(self.__weights)-1) else self.__ErrorHiddenLayer(layer, neuron)
|
||||
self.__errors[layer][neuron] = self.__ErrorFinalLayer(neuron) if (layer == len(self.weights)-1) else self.__ErrorHiddenLayer(layer, neuron)
|
||||
return self.__errors[layer][neuron]
|
||||
|
||||
def __ErrorFinalLayer(self, neuron):
|
||||
return network.__sigmoid(self.activations[len(self.activations)-1][neuron], True) * (self.__output[neuron] - self.__desiredOutput[neuron])
|
||||
return network.__sigmoid(self.activations[-1][neuron], derivative=True) * (self.outputs[-1][neuron] - self.__desiredOutput[neuron])
|
||||
|
||||
def __ErrorHiddenLayer(self, layer, neuron):
|
||||
upperLayerLinksSum = 0
|
||||
#Probablement faisable avec une multiplication de matrices
|
||||
for upperLayerNeuron in range(len(self.__weights[layer+1])):
|
||||
upperLayerLinksSum += self.__weights[layer+1][upperLayerNeuron][neuron] * self.__errors[layer+1][upperLayerNeuron]
|
||||
return network.__sigmoid(self.activations[layer][neuron], True) * upperLayerLinksSum
|
||||
for upperLayerNeuron in range(len(self.weights[layer+1])):
|
||||
upperLayerLinksSum += self.weights[layer+1][upperLayerNeuron][neuron] * self.__errors[layer+1][upperLayerNeuron]
|
||||
return network.__sigmoid(self.activations[layer][neuron], derivative=True) * upperLayerLinksSum
|
||||
|
||||
def __PartialDerivative(self, layer, neuron, weight):
|
||||
return self.__Error(layer, neuron) * self.outputs[layer-1][weight]
|
||||
return self.__Error(layer, neuron) * self.outputs[layer][weight]
|
@ -4,42 +4,36 @@ from sobek.network import network
|
||||
|
||||
random.seed()
|
||||
|
||||
myNetwork = network(10, 10, 10)
|
||||
myNetwork = network(10, 10)
|
||||
|
||||
learningRate = 1
|
||||
learningRate = 3
|
||||
|
||||
for j in range(100):
|
||||
for j in range(10000):
|
||||
rand = []
|
||||
inputs = []
|
||||
inputs2 = []
|
||||
desiredOutputs = []
|
||||
|
||||
if (j%50 == 0):
|
||||
print(j)
|
||||
|
||||
for i in range(1000):
|
||||
inputs.append([(random.randrange(10)/10)])
|
||||
inputs = np.array(inputs, dtype=object)
|
||||
for i in range(10):
|
||||
rand.append( random.randrange(10)/10)
|
||||
|
||||
for i in range(1000):
|
||||
desiredOutputs.append([0]*10)
|
||||
desiredOutputs[i][9 - int(inputs[i][0]*10)] = 1.0
|
||||
desiredOutputs = np.array(desiredOutputs, dtype=object)
|
||||
for i in range(10):
|
||||
desiredOutputs.append(np.zeros(10))
|
||||
desiredOutputs[i][9 - int(rand[i]*10)] = 1.0
|
||||
|
||||
#for i in range(1000):
|
||||
# inputs2.append([0]*10)
|
||||
# inputs2[i][int(inputs[i][0]*10)] = 1.0
|
||||
inputs2 = np.array(inputs2, dtype=object)
|
||||
for i in range(10):
|
||||
inputs.append(np.zeros(10))
|
||||
inputs[i][int(rand[i]*10)] = 1.0
|
||||
|
||||
if (j%10000 == 0):
|
||||
learningRate*= 0.1
|
||||
|
||||
myNetwork.train(desiredOutputs, desiredOutputs, learningRate)
|
||||
myNetwork.train(inputs, desiredOutputs, learningRate)
|
||||
|
||||
test = []
|
||||
test.append([0]*10)
|
||||
test.append([0]*10)
|
||||
test.append(np.zeros(10))
|
||||
test.append(np.zeros(10))
|
||||
test[0][1] = 1.0
|
||||
test[1][8] = 1.0
|
||||
test = np.array(test, dtype=object)
|
||||
test[1][5] = 1.0
|
||||
print(test[0])
|
||||
print(myNetwork.process(test[0]))
|
||||
print(myNetwork.process(test[1]))
|
63
testLearningNAND.py
Normal file
63
testLearningNAND.py
Normal file
@ -0,0 +1,63 @@
|
||||
import numpy as np
|
||||
import random
|
||||
from sobek.network import network
|
||||
|
||||
random.seed()
|
||||
|
||||
myNetwork = network(2, 1)
|
||||
|
||||
learningRate = 3
|
||||
|
||||
test = []
|
||||
result = []
|
||||
test.append(np.zeros(2))
|
||||
test.append(np.zeros(2))
|
||||
test.append(np.zeros(2))
|
||||
test.append(np.zeros(2))
|
||||
test[1][1] = 1.0
|
||||
test[2][0] = 1.0
|
||||
test[3][0] = 1.0
|
||||
test[3][1] = 1.0
|
||||
result.append(np.ones(1))
|
||||
result.append(np.ones(1))
|
||||
result.append(np.ones(1))
|
||||
result.append(np.zeros(1))
|
||||
|
||||
for j in range(10000):
|
||||
inputs = []
|
||||
desiredOutputs = []
|
||||
|
||||
if (j%1000 == 0):
|
||||
print(j)
|
||||
|
||||
random.shuffle(test)
|
||||
|
||||
for i in range(4):
|
||||
if (test[i][0] == 1.0) and (test[i][1] == 1.0):
|
||||
result[i][0] = 0.0
|
||||
else:
|
||||
result[i][0] = 1.0
|
||||
|
||||
myNetwork.train(test, result, learningRate)
|
||||
|
||||
test = []
|
||||
result = []
|
||||
test.append(np.zeros(2))
|
||||
test.append(np.zeros(2))
|
||||
test.append(np.zeros(2))
|
||||
test.append(np.zeros(2))
|
||||
test[1][1] = 1.0
|
||||
test[2][0] = 1.0
|
||||
test[3][0] = 1.0
|
||||
test[3][1] = 1.0
|
||||
result.append(np.ones(1))
|
||||
result.append(np.ones(1))
|
||||
result.append(np.ones(1))
|
||||
result.append(np.zeros(1))
|
||||
|
||||
print(myNetwork.weights)
|
||||
print(myNetwork.biases)
|
||||
print("0 0 : " + str(myNetwork.process(test[0])) + " == 1 ?")
|
||||
print("0 1 : " + str(myNetwork.process(test[1])) + " == 1 ?")
|
||||
print("1 0 : " + str(myNetwork.process(test[2])) + " == 1 ?")
|
||||
print("1 1 : " + str(myNetwork.process(test[3])) + " == 0 ?")
|
25
testNAND.py
Normal file
25
testNAND.py
Normal file
@ -0,0 +1,25 @@
|
||||
import numpy as np
|
||||
import random
|
||||
from sobek.network import network
|
||||
|
||||
myNetwork = network(2, 1)
|
||||
|
||||
test = []
|
||||
test.append(np.zeros(2))
|
||||
test.append(np.zeros(2))
|
||||
test.append(np.zeros(2))
|
||||
test.append(np.zeros(2))
|
||||
test[1][1] = 1.0
|
||||
test[2][0] = 1.0
|
||||
test[3][0] = 1.0
|
||||
test[3][1] = 1.0
|
||||
|
||||
myNetwork.weights = [np.array([[-10.0, -10.0]])]
|
||||
myNetwork.biases = [np.array([15.0])]
|
||||
print(myNetwork.weights)
|
||||
print(myNetwork.biases)
|
||||
|
||||
print("0 0 : " + str(myNetwork.process(test[0])) + " == 1 ?")
|
||||
print("0 1 : " + str(myNetwork.process(test[1])) + " == 1 ?")
|
||||
print("1 0 : " + str(myNetwork.process(test[2])) + " == 1 ?")
|
||||
print("1 1 : " + str(myNetwork.process(test[3])) + " == 0 ?")
|
Loading…
Reference in New Issue
Block a user