Reseau neuronal basique fonctionnel

This commit is contained in:
eynard 2021-12-18 20:57:44 +01:00
parent c0a705ffb9
commit dd47f73356
4 changed files with 149 additions and 62 deletions

View File

@ -1,5 +1,4 @@
import numpy as np import numpy as np
import math
class network: class network:
@ -7,71 +6,71 @@ class network:
if type(inputLayerSize) != int: if type(inputLayerSize) != int:
raise TypeError("The input layer size must be an int!") raise TypeError("The input layer size must be an int!")
self.__weights = [] self.weights = []
self.__inputLayerSize = inputLayerSize self.__inputLayerSize = inputLayerSize
oldLayerSize = inputLayerSize oldLayerSize = inputLayerSize
for layerSize in layerSizes: for layerSize in layerSizes:
self.__weights.append( np.random.random((layerSize, oldLayerSize)) ) self.weights.append( np.random.randn(layerSize, oldLayerSize) )
oldLayerSize = layerSize oldLayerSize = layerSize
self.__biases = [[0]*layerSize for layerSize in layerSizes] self.biases = [np.random.randn(layerSize) for layerSize in layerSizes]
self.__weights = np.array(self.__weights, dtype=object)
self.__biases = np.array(self.__biases, dtype=object)
def __reLu(value, derivative=False): def __reLu(value, derivative=False):
if (derivative): if (derivative):
return 0 if (value == 0) else 1 return 0 if (value < 0) else 1
return max(0, value) return max(0, value)
def __sigmoid(value, derivative=False): def __sigmoid(value, derivative=False):
if (derivative): if (derivative):
return network.__sigmoid(value) * (1 - network.__sigmoid(value)) return network.__sigmoid(value) * (1 - network.__sigmoid(value))
return 1/(1+math.exp(-value)) return 1.0/(1.0+np.exp(-value))
def process(self, _input, __storeValues=False): def process(self, _input, __storeValues=False):
if type(_input) != np.ndarray: if type(_input) != np.ndarray:
raise TypeError("The input must be a vector!") raise TypeError("The input must be a vector!")
if _input.size != self.__inputLayerSize: if _input.size != self.__inputLayerSize:
raise ValueError("The input vector has the wrong size!") raise ValueError("The input vector has the wrong size!")
#if _input.dtype != np.float64: if _input.dtype != np.float64:
# raise TypeError("The input vector must contain floats!") print(_input.dtype)
raise TypeError("The input vector must contain floats!")
if (__storeValues): if (__storeValues):
self.activations = [] self.activations = []
self.outputs = [] self.outputs = []
self.outputs.append(_input)
for layerWeights, bias in zip(self.__weights, self.__biases): for layerWeights, layerBias in zip(self.weights, self.biases):
_input = np.matmul(layerWeights, _input) _input = np.dot(layerWeights, _input)
_input = np.add(_input, bias) _input = np.add(_input, layerBias)
if (__storeValues): if (__storeValues):
self.activations.append(_input.copy()) self.activations.append(_input)
#activation function application #activation function application
for neuron in range(len(_input)): #for i in range(len(_input)):
_input[neuron] = network.__sigmoid(_input[neuron]) # _input[i] = network.__sigmoid(_input)
_input = network.__sigmoid(_input)
#On peut comparer la performance si on recalcul plus tard #On peut comparer la performance si on recalcul plus tard
if (__storeValues): if (__storeValues):
self.outputs.append(_input.copy()) self.outputs.append(_input)
self.activations = np.array(self.activations, dtype=object)
self.outputs = np.array(self.outputs, dtype=object)
return _input return _input
def train(self, inputs, desiredOutputs, learningRate): def train(self, inputs, desiredOutputs, learningRate):
errorSumsWeights = [[[0]*len(neuron) for neuron in layer] for layer in self.__weights] if (len(inputs) != len(desiredOutputs)):
errorSumsBiases = [[0]*len(layer) for layer in self.__biases] raise ValueError("The inputs and desired outputs vectors must have the same amount of data !")
self.__errors = [[0]*len(layer) for layer in self.__weights]
for _input, desiredOutput in zip(inputs, desiredOutputs): for _input, desiredOutput in zip(inputs, desiredOutputs):
#rempli self.activations et self.outputs errorSumsWeights = [np.zeros(layer.shape) for layer in self.weights]
self.__output = self.process(_input, True) errorSumsBiases = [np.zeros(layer.shape) for layer in self.biases]
self.__errors = [np.zeros(len(layer)) for layer in self.weights]
#rempli self.activations et self.outputs
self.process(_input, True)
self.__desiredOutput = desiredOutput self.__desiredOutput = desiredOutput
#Somme de matrice ? #Somme de matrice ?
@ -84,17 +83,23 @@ class network:
total = 0 total = 0
errorSumsWeights = np.multiply(errorSumsWeights, -(learningRate/len(inputs))) errorSumsWeights = np.multiply(errorSumsWeights, -(learningRate/len(inputs)))
self.__weights = np.add(self.__weights, errorSumsWeights) self.weights = np.add(self.weights, errorSumsWeights)
errorSumsBiases = np.multiply(errorSumsBiases, -(learningRate/len(inputs))) errorSumsBiases = np.multiply(errorSumsBiases, -(learningRate/len(inputs)))
self.__biases = np.add(self.__biases, errorSumsBiases) self.biases = np.add(self.biases, errorSumsBiases)
print(self.__biases) #print(self.__biases)
""" """
for layerNumber in range(len(errorSumsWeights)): for layerNumber in range(len(errorSumsWeights)):
for neuronNumber in range(len(errorSumsWeights[layerNumber])): for neuronNumber in range(len(errorSumsWeights[layerNumber])):
errorSumsBiases[layerNumber][neuronNumber] = errorSumsBiases[layerNumber][neuronNumber] / len(inputs)
total += errorSumsBiases[layerNumber][neuronNumber]
self.biases[layerNumber][neuronNumber] -= learningRate * errorSumsBiases[layerNumber][neuronNumber]
for weightNumber in range(len(errorSumsWeights[layerNumber][neuronNumber])): for weightNumber in range(len(errorSumsWeights[layerNumber][neuronNumber])):
#Probablement faisable avec une multiplication de matrices #Probablement faisable avec une multiplication de matrices
@ -103,24 +108,24 @@ class network:
total += errorSumsWeights[layerNumber][neuronNumber][weightNumber] total += errorSumsWeights[layerNumber][neuronNumber][weightNumber]
#Probablement faisable avec une somme de matrices #Probablement faisable avec une somme de matrices
self.__weights[layerNumber][neuronNumber][weightNumber] -= learningRate * errorSumsWeights[layerNumber][neuronNumber][weightNumber] self.weights[layerNumber][neuronNumber][weightNumber] -= learningRate * errorSumsWeights[layerNumber][neuronNumber][weightNumber]
print("Error : " + str(total))""" #print("Error : " + str(total))"""
def __Error(self, layer, neuron): def __Error(self, layer, neuron):
if (self.__errors[layer][neuron] == 0 ): if (self.__errors[layer][neuron] == 0 ):
self.__errors[layer][neuron] = self.__ErrorFinalLayer(neuron) if (layer == len(self.__weights)-1) else self.__ErrorHiddenLayer(layer, neuron) self.__errors[layer][neuron] = self.__ErrorFinalLayer(neuron) if (layer == len(self.weights)-1) else self.__ErrorHiddenLayer(layer, neuron)
return self.__errors[layer][neuron] return self.__errors[layer][neuron]
def __ErrorFinalLayer(self, neuron): def __ErrorFinalLayer(self, neuron):
return network.__sigmoid(self.activations[len(self.activations)-1][neuron], True) * (self.__output[neuron] - self.__desiredOutput[neuron]) return network.__sigmoid(self.activations[-1][neuron], derivative=True) * (self.outputs[-1][neuron] - self.__desiredOutput[neuron])
def __ErrorHiddenLayer(self, layer, neuron): def __ErrorHiddenLayer(self, layer, neuron):
upperLayerLinksSum = 0 upperLayerLinksSum = 0
#Probablement faisable avec une multiplication de matrices #Probablement faisable avec une multiplication de matrices
for upperLayerNeuron in range(len(self.__weights[layer+1])): for upperLayerNeuron in range(len(self.weights[layer+1])):
upperLayerLinksSum += self.__weights[layer+1][upperLayerNeuron][neuron] * self.__errors[layer+1][upperLayerNeuron] upperLayerLinksSum += self.weights[layer+1][upperLayerNeuron][neuron] * self.__errors[layer+1][upperLayerNeuron]
return network.__sigmoid(self.activations[layer][neuron], True) * upperLayerLinksSum return network.__sigmoid(self.activations[layer][neuron], derivative=True) * upperLayerLinksSum
def __PartialDerivative(self, layer, neuron, weight): def __PartialDerivative(self, layer, neuron, weight):
return self.__Error(layer, neuron) * self.outputs[layer-1][weight] return self.__Error(layer, neuron) * self.outputs[layer][weight]

View File

@ -4,42 +4,36 @@ from sobek.network import network
random.seed() random.seed()
myNetwork = network(10, 10, 10) myNetwork = network(10, 10)
learningRate = 1 learningRate = 3
for j in range(100): for j in range(10000):
rand = []
inputs = [] inputs = []
inputs2 = []
desiredOutputs = [] desiredOutputs = []
if (j%50 == 0): if (j%50 == 0):
print(j) print(j)
for i in range(1000): for i in range(10):
inputs.append([(random.randrange(10)/10)]) rand.append( random.randrange(10)/10)
inputs = np.array(inputs, dtype=object)
for i in range(1000): for i in range(10):
desiredOutputs.append([0]*10) desiredOutputs.append(np.zeros(10))
desiredOutputs[i][9 - int(inputs[i][0]*10)] = 1.0 desiredOutputs[i][9 - int(rand[i]*10)] = 1.0
desiredOutputs = np.array(desiredOutputs, dtype=object)
#for i in range(1000): for i in range(10):
# inputs2.append([0]*10) inputs.append(np.zeros(10))
# inputs2[i][int(inputs[i][0]*10)] = 1.0 inputs[i][int(rand[i]*10)] = 1.0
inputs2 = np.array(inputs2, dtype=object)
if (j%10000 == 0): myNetwork.train(inputs, desiredOutputs, learningRate)
learningRate*= 0.1
myNetwork.train(desiredOutputs, desiredOutputs, learningRate)
test = [] test = []
test.append([0]*10) test.append(np.zeros(10))
test.append([0]*10) test.append(np.zeros(10))
test[0][1] = 1.0 test[0][1] = 1.0
test[1][8] = 1.0 test[1][5] = 1.0
test = np.array(test, dtype=object) print(test[0])
print(myNetwork.process(test[0])) print(myNetwork.process(test[0]))
print(myNetwork.process(test[1])) print(myNetwork.process(test[1]))

63
testLearningNAND.py Normal file
View File

@ -0,0 +1,63 @@
import numpy as np
import random
from sobek.network import network
random.seed()
myNetwork = network(2, 1)
learningRate = 3
test = []
result = []
test.append(np.zeros(2))
test.append(np.zeros(2))
test.append(np.zeros(2))
test.append(np.zeros(2))
test[1][1] = 1.0
test[2][0] = 1.0
test[3][0] = 1.0
test[3][1] = 1.0
result.append(np.ones(1))
result.append(np.ones(1))
result.append(np.ones(1))
result.append(np.zeros(1))
for j in range(10000):
inputs = []
desiredOutputs = []
if (j%1000 == 0):
print(j)
random.shuffle(test)
for i in range(4):
if (test[i][0] == 1.0) and (test[i][1] == 1.0):
result[i][0] = 0.0
else:
result[i][0] = 1.0
myNetwork.train(test, result, learningRate)
test = []
result = []
test.append(np.zeros(2))
test.append(np.zeros(2))
test.append(np.zeros(2))
test.append(np.zeros(2))
test[1][1] = 1.0
test[2][0] = 1.0
test[3][0] = 1.0
test[3][1] = 1.0
result.append(np.ones(1))
result.append(np.ones(1))
result.append(np.ones(1))
result.append(np.zeros(1))
print(myNetwork.weights)
print(myNetwork.biases)
print("0 0 : " + str(myNetwork.process(test[0])) + " == 1 ?")
print("0 1 : " + str(myNetwork.process(test[1])) + " == 1 ?")
print("1 0 : " + str(myNetwork.process(test[2])) + " == 1 ?")
print("1 1 : " + str(myNetwork.process(test[3])) + " == 0 ?")

25
testNAND.py Normal file
View File

@ -0,0 +1,25 @@
import numpy as np
import random
from sobek.network import network
myNetwork = network(2, 1)
test = []
test.append(np.zeros(2))
test.append(np.zeros(2))
test.append(np.zeros(2))
test.append(np.zeros(2))
test[1][1] = 1.0
test[2][0] = 1.0
test[3][0] = 1.0
test[3][1] = 1.0
myNetwork.weights = [np.array([[-10.0, -10.0]])]
myNetwork.biases = [np.array([15.0])]
print(myNetwork.weights)
print(myNetwork.biases)
print("0 0 : " + str(myNetwork.process(test[0])) + " == 1 ?")
print("0 1 : " + str(myNetwork.process(test[1])) + " == 1 ?")
print("1 0 : " + str(myNetwork.process(test[2])) + " == 1 ?")
print("1 1 : " + str(myNetwork.process(test[3])) + " == 0 ?")