63 lines
1.3 KiB
Python
63 lines
1.3 KiB
Python
import numpy as np
|
|
import random
|
|
from sobek.network import network
|
|
|
|
random.seed()
|
|
|
|
myNetwork = network(2, 1)
|
|
|
|
learningRate = 3
|
|
|
|
test = []
|
|
result = []
|
|
test.append(np.zeros(2))
|
|
test.append(np.zeros(2))
|
|
test.append(np.zeros(2))
|
|
test.append(np.zeros(2))
|
|
test[1][1] = 1.0
|
|
test[2][0] = 1.0
|
|
test[3][0] = 1.0
|
|
test[3][1] = 1.0
|
|
result.append(np.ones(1))
|
|
result.append(np.ones(1))
|
|
result.append(np.ones(1))
|
|
result.append(np.zeros(1))
|
|
|
|
for j in range(10000):
|
|
inputs = []
|
|
desiredOutputs = []
|
|
|
|
if (j%1000 == 0):
|
|
print(j)
|
|
|
|
random.shuffle(test)
|
|
|
|
for i in range(4):
|
|
if (test[i][0] == 1.0) and (test[i][1] == 1.0):
|
|
result[i][0] = 0.0
|
|
else:
|
|
result[i][0] = 1.0
|
|
|
|
myNetwork.train(test, result, learningRate)
|
|
|
|
test = []
|
|
result = []
|
|
test.append(np.zeros(2))
|
|
test.append(np.zeros(2))
|
|
test.append(np.zeros(2))
|
|
test.append(np.zeros(2))
|
|
test[1][1] = 1.0
|
|
test[2][0] = 1.0
|
|
test[3][0] = 1.0
|
|
test[3][1] = 1.0
|
|
result.append(np.ones(1))
|
|
result.append(np.ones(1))
|
|
result.append(np.ones(1))
|
|
result.append(np.zeros(1))
|
|
|
|
print(myNetwork.weights)
|
|
print(myNetwork.biases)
|
|
print("0 0 : " + str(myNetwork.process(test[0])) + " == 1 ?")
|
|
print("0 1 : " + str(myNetwork.process(test[1])) + " == 1 ?")
|
|
print("1 0 : " + str(myNetwork.process(test[2])) + " == 1 ?")
|
|
print("1 1 : " + str(myNetwork.process(test[3])) + " == 0 ?") |