Compare commits
	
		
			1 Commits
		
	
	
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
| c462dc8991 | 
							
								
								
									
										52
									
								
								README.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										52
									
								
								README.md
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,52 @@ | ||||
| # Ex2 - Calculs de complexité de fonctions | ||||
|  | ||||
| Complexité algorithmique :  | ||||
| - fonction_1 : O(n*m)<br> | ||||
| Cette fonction contient des boucles imbriquées. Dans le pire des cas, il faudra parcourir n x m. | ||||
| - fonction_2 : O(n) <br> | ||||
| La boucle while s'exécute au maximum n fois. | ||||
| - fonction_3 : O(1)<br> | ||||
| Cette fonction ne contient pas de boucle. Chaque condition est évaluée une seule fois, indépendamment de la taille des données d'entrée. | ||||
|  | ||||
| # Ex3 - student_rank.c | ||||
|  | ||||
|  | ||||
| ``` | ||||
| void sort_students(int** students_rank, int** students_array, int students_number, int grades_number) | ||||
| { | ||||
|     int i = 0, j = 0; | ||||
|     for(i = 0; i < grades_number; i++) | ||||
|     { | ||||
|         int * grades = (int*) malloc(students_number*sizeof(int)); | ||||
| 	for(j = 0; j < students_number; j++) | ||||
| 	{ | ||||
| 	    grades[j] = students_array[j][i]; | ||||
| 	} | ||||
|         bubblesort(grades,students_number); | ||||
| 	for(j = 0; j < students_number; j++) | ||||
| 	{ | ||||
|             students_rank[j][i] = find_rank_student(students_array[j][i],grades,students_number); | ||||
| 	} | ||||
| 	free(grades); | ||||
|     } | ||||
| } | ||||
| ``` | ||||
|  | ||||
| 1. La boucle externe s'exécute m fois, où m représente grades_number La complexité est donc O(m). | ||||
| 2. La copie des notes prend O(n),où n est le nombre d'étudiants. | ||||
| 3. Le tri bublesort a une complexité de O(n²)  | ||||
| 4. find_rank_student la complexité de cette étape est dominée par le tri des étudiants bubblesort donc O(n²). | ||||
|  | ||||
| À chaque itération (pour chaque groupe de notes m), les opérations dominantes sont le tri des n étudiants avec une complexité de O(n²) ainsi la complexité totale est O(m*n²). | ||||
|  | ||||
| ## Ex4 - Algorithme de tri | ||||
|  | ||||
| ### 1. Tri des sous-listes : | ||||
| Si une sous-liste a une taille de m, la complexité du tri de cette sous-liste est O(m²) car l'algorithme de tri parcourt la sous-liste m et, à chaque fois, il effectue m-1 comparaisons. | ||||
| il y a n sous-listes au total. Donc, la complexité totale du tri des sous-listes est O(n*m²). | ||||
|  | ||||
| ### 2. Tri liste principale | ||||
| À chaque itération, nous comparons les sommes des sous-listes. Calculer la somme des éléments d'une sous-liste prend O(m) temps (car la somme des m éléments de la sous-liste doit être calculée). | ||||
| Donc, pour chaque comparaison, la complexité est O(m) (pour calculer la somme), et il y a O(n²) comparaisons au total dans le tri à bulle de la liste principale. La complexité du tri de la liste principale est donc O(n²*m) | ||||
|  | ||||
| Donc, la complexité totale est O( n*m² + n²\*m ) | ||||
							
								
								
									
										
											BIN
										
									
								
								TD4 - DEV5.1.pdf
									
									
									
									
									
								
							
							
						
						
									
										
											BIN
										
									
								
								TD4 - DEV5.1.pdf
									
									
									
									
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										19
									
								
								sorting.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										19
									
								
								sorting.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,19 @@ | ||||
| def sorting(array): | ||||
|     for sublist in array: | ||||
|         for i in range(len(sublist)): | ||||
|             for j in range(len(sublist) - i - 1): | ||||
|                 if sublist[j] > sublist[j + 1]: | ||||
|                     sublist[j], sublist[j + 1] = sublist[j + 1], sublist[j] | ||||
|  | ||||
|     for i in range(len(array)): | ||||
|         for j in range(len(array) - i - 1): | ||||
|             sum_i = sum(array[j]) | ||||
|             sum_j = sum(array[j + 1]) | ||||
|             if sum_i > sum_j: | ||||
|                 array[j], array[j + 1] = array[j + 1], array[j] | ||||
|                  | ||||
|     return array | ||||
|  | ||||
| array = [[0, 3, 2], [9, 4, 5], [4, 1, 3]] | ||||
| sorted_array = sorting(array) | ||||
| print(sorted_array) | ||||
		Reference in New Issue
	
	Block a user