SAE_2.04/EXO4/README.md
2024-06-15 19:42:14 +02:00

1.6 KiB

Exercice 4 : Analyse de la relation entre âge, expérience et salaire

Table des matières

  1. Initialisation des variables
  2. Nuage de points et régression linéaire : Age vs Salaire
  3. Nuage de points et régression linéaire : Expérience vs Salaire

Initialisation des variables

Pour cette exercice, veuillez initaliser les variables suivantes :

Script Scilab :

D = csvRead('data.csv');
DD = csvRead('data.csv',',','.','string');
genre = DD(:,3);

Question 1 : Nuage de points et régression linéaire (Age vs Salaire)

Tracez un nuage de points (age,salaire), et la droite de regression correspondante. Quel est le coefficient de corrélation ?

Script Scilab :

X=csvDouble(:,7)
Y=csvDouble(:,2)
plot2d(X,Y,-1)
[a,b] = reglin(X',Y')
y_reg = a*X+b
plot2d(X,y_reg,5)
corrcoef(X,Y)

Résultat :

  • Coefficient de corrélation : 0.7280526
  • q1

Question 2 : Nuage de points et régression linéaire : Expérience vs Salaire

Tracez un nuage de points (expérience,salaire), et la droite de regression correspondante. Quel est le coefficient de corrélation ?

Script Scilab :

X=csvDouble(:,7)
Y=csvDouble(:,6)
plot2d(X,Y,-1)
[a,b] = reglin(X',Y')
y_reg = a*X+b
plot2d(X,y_reg,5)
corrcoef(X,Y)

Résultat :

  • Coefficient de corrélation : 0.8089689
  • q2

⬅️ | 🏠 | ➡️