forked from tanchou/Verilog
Refactor DHT11 module and testbench: update timing parameters, adjust state machine, and correct simulation script paths
This commit is contained in:
@@ -1,5 +1,8 @@
|
||||
@call c:\oss-cad-suite\environment.bat
|
||||
@echo off
|
||||
|
||||
mkdir runs
|
||||
|
||||
if "%1"=="sim" call scripts\windows\simulate.bat
|
||||
if "%1"=="wave" call scripts\windows\gtkwave.bat
|
||||
if "%1"=="clean" call scripts\windows\clean.bat
|
||||
|
@@ -1,3 +1,3 @@
|
||||
@echo off
|
||||
echo === Lancement de GTKWave ===
|
||||
gtkwave runs/wave.vcd
|
||||
gtkwave runs/sim.vcd
|
||||
|
@@ -21,7 +21,7 @@ module dht11_interface #(
|
||||
localparam T_51US = CLK_FREQ * 51 / 1_000_000;
|
||||
localparam T_50US = CLK_FREQ * 50 / 1_000_000;
|
||||
localparam T_49US = CLK_FREQ * 49 / 1_000_000;
|
||||
localparam T_40US = CLK_FREQ * 40 / 1_000_000;
|
||||
localparam T_41US = CLK_FREQ * 41 / 1_000_000;
|
||||
localparam T_28US = CLK_FREQ * 28 / 1_000_000;
|
||||
localparam T_26US = CLK_FREQ * 26 / 1_000_000;
|
||||
localparam T_20US = CLK_FREQ * 20 / 1_000_000;
|
||||
@@ -104,13 +104,13 @@ module dht11_interface #(
|
||||
WAIT_RESPONSE: begin
|
||||
timer <= timer + 1;
|
||||
if (sig_in == 0) begin
|
||||
if (timer > T_20US && timer < T_40US) begin
|
||||
if (timer > T_20US && timer < T_41US) begin
|
||||
timer <= 0;
|
||||
state <= RESPONSE_LOW;
|
||||
end else begin
|
||||
state <= ERROR;
|
||||
end
|
||||
end else if (timer > T_40US) begin
|
||||
end else if (timer > T_41US) begin
|
||||
state <= ERROR;
|
||||
end
|
||||
end
|
||||
|
@@ -1,31 +1,37 @@
|
||||
module dht11_model (
|
||||
inout wire data, // Ligne de données bidirectionnelle
|
||||
input wire clk, // Horloge système (50 MHz)
|
||||
input wire clk, // Horloge système (27 MHz)
|
||||
input wire rst_n // Reset actif bas
|
||||
);
|
||||
|
||||
// Paramètres pour les timings (basés sur une horloge de 50 MHz, période 20 ns)
|
||||
localparam CLK_FREQ = 50_000_000; // 50 MHz
|
||||
localparam START_LOW_TIME = 18_000 / 20; // 18 ms pour le signal de démarrage
|
||||
localparam START_HIGH_TIME = 40_000 / 20; // 20-40 µs pour le relâchement
|
||||
localparam RESPONSE_LOW = 80_000 / 20; // 80 µs pour la réponse basse
|
||||
localparam RESPONSE_HIGH = 80_000 / 20; // 80 µs pour la réponse haute
|
||||
localparam BIT0_LOW = 50_000 / 20; // 50 µs pour bit '0'
|
||||
localparam BIT1_LOW = 70_000 / 20; // 70 µs pour bit '1'
|
||||
// Paramètres pour les timings (basés sur une horloge de 27 MHz, période ~37 ns)
|
||||
localparam CLK_FREQ = 27_000_000; // 27 MHz
|
||||
localparam CLK_PERIOD_NS = 37; // 37 ns
|
||||
localparam T_START_LOW = (18_000_000 / CLK_PERIOD_NS); // 18 ms
|
||||
localparam T_START_HIGH = (39_500 / CLK_PERIOD_NS); // 40 µs
|
||||
localparam T_RESP_LOW = (80_000 / CLK_PERIOD_NS); // 80 µs
|
||||
localparam T_RESP_HIGH = (80_000 / CLK_PERIOD_NS); // 80 µs
|
||||
localparam T_BIT0_LOW = (50_000 / CLK_PERIOD_NS); // 50 µs pour bit '0'
|
||||
localparam T_BIT1_LOW = (70_000 / CLK_PERIOD_NS); // 70 µs pour bit '1'
|
||||
localparam T_BIT_GAP = (50_000 / CLK_PERIOD_NS); // 50 µs entre bits
|
||||
localparam DATA_BITS = 40; // 40 bits de données
|
||||
|
||||
// États de la machine à états
|
||||
localparam IDLE = 3'd0,
|
||||
START = 3'd1,
|
||||
RESPONSE = 3'd2,
|
||||
SEND_DATA = 3'd3,
|
||||
ENDED = 3'd4;
|
||||
// États de la machine à états de Moore
|
||||
localparam IDLE = 4'd0,
|
||||
WAIT_START_LOW = 4'd1,
|
||||
WAIT_START_HIGH= 4'd2,
|
||||
RESPONSE_LOW = 4'd3,
|
||||
RESPONSE_HIGH = 4'd4,
|
||||
SEND_BIT_LOW = 4'd5,
|
||||
SEND_BIT_HIGH = 4'd6,
|
||||
END_TRANS = 4'd7;
|
||||
|
||||
reg [2:0] state, next_state;
|
||||
reg [15:0] counter; // Compteur pour les timings
|
||||
// Signaux internes
|
||||
reg [3:0] state; // État actuel
|
||||
reg [19:0] counter; // Compteur pour les timings (supporte jusqu'à 20 ms)
|
||||
reg [5:0] bit_index; // Index du bit à envoyer
|
||||
reg data_out; // Valeur de sortie sur la ligne data
|
||||
reg data_oe; // Contrôle de l'output enable (1 = sortie, 0 = haute impédance)
|
||||
reg data_oe; // Output enable (1 = sortie, 0 = haute impédance)
|
||||
wire data_in; // Valeur lue sur la ligne data
|
||||
|
||||
// Données simulées (exemple : humidité = 45.0%, température = 23.0°C)
|
||||
@@ -33,110 +39,102 @@ module dht11_model (
|
||||
reg [7:0] humidity_dec = 8'h00; // 0
|
||||
reg [7:0] temp_int = 8'h17; // 23 en décimal
|
||||
reg [7:0] temp_dec = 8'h00; // 0
|
||||
reg [7:0] checksum; // Checksum = sum des 4 octets
|
||||
|
||||
reg [7:0] checksum; // Checksum
|
||||
reg [39:0] data_shift; // Registre pour les 40 bits de données
|
||||
|
||||
// Gestion de la ligne bidirectionnelle
|
||||
assign data = data_oe ? data_out : 1'bz;
|
||||
assign data_in = data;
|
||||
|
||||
// Calcul du checksum
|
||||
// Calcul du checksum et préparation des données
|
||||
always @(posedge clk or negedge rst_n) begin
|
||||
if (!rst_n) begin
|
||||
checksum <= 8'h00;
|
||||
end else begin
|
||||
checksum <= humidity_int + humidity_dec + temp_int + temp_dec;
|
||||
end
|
||||
end
|
||||
|
||||
// Concaténation des données à envoyer
|
||||
always @(posedge clk or negedge rst_n) begin
|
||||
if (!rst_n) begin
|
||||
data_shift <= 40'b0;
|
||||
end else begin
|
||||
checksum <= humidity_int + humidity_dec + temp_int + temp_dec;
|
||||
data_shift <= {humidity_int, humidity_dec, temp_int, temp_dec, checksum};
|
||||
end
|
||||
end
|
||||
|
||||
// Machine à états
|
||||
// Logique séquentielle (machine à états de Moore)
|
||||
always @(posedge clk or negedge rst_n) begin
|
||||
if (!rst_n) begin
|
||||
state <= IDLE;
|
||||
counter <= 16'b0;
|
||||
counter <= 20'b0;
|
||||
bit_index <= 6'b0;
|
||||
data_out <= 1'b1;
|
||||
data_oe <= 1'b0;
|
||||
end else begin
|
||||
state <= next_state;
|
||||
case (state)
|
||||
IDLE: begin
|
||||
counter <= 16'b0;
|
||||
bit_index <= 6'b0;
|
||||
data_out <= 1'b1;
|
||||
data_oe <= 1'b0;
|
||||
end
|
||||
START: begin
|
||||
counter <= counter + 1;
|
||||
data_out <= 1'b0;
|
||||
data_oe <= 1'b1;
|
||||
end
|
||||
RESPONSE: begin
|
||||
counter <= counter + 1;
|
||||
if (counter < RESPONSE_LOW) begin
|
||||
data_out <= 1'b0;
|
||||
data_oe <= 1'b1;
|
||||
end else begin
|
||||
data_out <= 1'b1;
|
||||
data_oe <= 1'b1;
|
||||
end
|
||||
end
|
||||
SEND_DATA: begin
|
||||
counter <= counter + 1;
|
||||
if (counter == 0) begin
|
||||
data_out <= 1'b0; // Début du bit (toujours bas)
|
||||
data_oe <= 1'b1;
|
||||
end else if (counter == (data_shift[39-bit_index] ? BIT1_LOW : BIT0_LOW)) begin
|
||||
data_out <= 1'b1; // Fin du bit
|
||||
data_oe <= 1'b1;
|
||||
end else if (counter >= (data_shift[39-bit_index] ? BIT1_LOW + 50 : BIT0_LOW + 50)) begin
|
||||
counter <= 16'b0;
|
||||
bit_index <= bit_index + 1;
|
||||
end
|
||||
end
|
||||
ENDED: begin
|
||||
data_out <= 1'b1;
|
||||
data_oe <= 1'b0;
|
||||
counter <= 16'b0;
|
||||
end
|
||||
endcase
|
||||
end
|
||||
end
|
||||
counter <= counter + 1; // Incrément du compteur par défaut
|
||||
|
||||
// Logique de transition des états
|
||||
always @(*) begin
|
||||
next_state = state;
|
||||
case (state)
|
||||
IDLE: begin
|
||||
if (data_in == 1'b0) // Détection du signal de démarrage
|
||||
next_state = START;
|
||||
counter <= 20'b0;
|
||||
bit_index <= 6'b0;
|
||||
data_out <= 1'b1;
|
||||
data_oe <= 1'b0;
|
||||
if (data_in === 1'b0) // Vérification explicite pour éviter X
|
||||
state <= WAIT_START_LOW;
|
||||
end
|
||||
START: begin
|
||||
if (counter >= START_LOW_TIME && data_in == 1'b1)
|
||||
next_state = RESPONSE;
|
||||
WAIT_START_LOW: begin
|
||||
data_out <= 1'b1;
|
||||
data_oe <= 1'b0;
|
||||
if (data_in === 1'b1 && counter >= T_START_LOW)
|
||||
state <= WAIT_START_HIGH;
|
||||
else if (data_in === 1'b1)
|
||||
state <= IDLE; // Signal de démarrage trop court
|
||||
end
|
||||
RESPONSE: begin
|
||||
if (counter >= RESPONSE_LOW + RESPONSE_HIGH)
|
||||
next_state = SEND_DATA;
|
||||
WAIT_START_HIGH: begin
|
||||
data_out <= 1'b1;
|
||||
data_oe <= 1'b0;
|
||||
if (counter >= T_START_HIGH)
|
||||
state <= RESPONSE_LOW;
|
||||
end
|
||||
SEND_DATA: begin
|
||||
if (bit_index >= DATA_BITS)
|
||||
next_state = ENDED;
|
||||
RESPONSE_LOW: begin
|
||||
data_out <= 1'b0;
|
||||
data_oe <= 1'b1;
|
||||
if (counter >= T_RESP_LOW)
|
||||
state <= RESPONSE_HIGH;
|
||||
end
|
||||
ENDED: begin
|
||||
next_state = IDLE;
|
||||
RESPONSE_HIGH: begin
|
||||
data_out <= 1'b1;
|
||||
data_oe <= 1'b1;
|
||||
if (counter >= T_RESP_HIGH)
|
||||
state <= SEND_BIT_LOW;
|
||||
end
|
||||
SEND_BIT_LOW: begin
|
||||
data_out <= 1'b0;
|
||||
data_oe <= 1'b1;
|
||||
if (counter >= (data_shift[39-bit_index] ? T_BIT1_LOW : T_BIT0_LOW))
|
||||
state <= SEND_BIT_HIGH;
|
||||
end
|
||||
SEND_BIT_HIGH: begin
|
||||
data_out <= 1'b1;
|
||||
data_oe <= 1'b1;
|
||||
if (counter >= T_BIT_GAP) begin
|
||||
counter <= 20'b0;
|
||||
bit_index <= bit_index + 1;
|
||||
if (bit_index + 1 < DATA_BITS)
|
||||
state <= SEND_BIT_LOW;
|
||||
else
|
||||
state <= END_TRANS;
|
||||
end
|
||||
end
|
||||
END_TRANS: begin
|
||||
data_out <= 1'b1;
|
||||
data_oe <= 1'b0;
|
||||
counter <= 20'b0;
|
||||
state <= IDLE;
|
||||
end
|
||||
default: begin
|
||||
state <= IDLE;
|
||||
counter <= 20'b0;
|
||||
data_out <= 1'b1;
|
||||
data_oe <= 1'b0;
|
||||
end
|
||||
endcase
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
Reference in New Issue
Block a user