forked from tanchou/Verilog
rx fifo et tx fifo on l'air de fonctionner lors des testbenchs
This commit is contained in:
43
Semaine_4/UART_FIFO/IP/verilog/fifo.v
Normal file
43
Semaine_4/UART_FIFO/IP/verilog/fifo.v
Normal file
@@ -0,0 +1,43 @@
|
||||
module fifo #(
|
||||
parameter DEPTH = 16,
|
||||
parameter WIDTH = 8
|
||||
)(
|
||||
input wire clk,
|
||||
input wire wr_en,
|
||||
input wire[WIDTH-1:0] wr_data,
|
||||
input wire rd_en,
|
||||
output wire[WIDTH-1:0] rd_data,
|
||||
|
||||
output wire full,
|
||||
output wire empty
|
||||
);
|
||||
|
||||
reg [WIDTH-1:0] fifo[0:DEPTH-1];
|
||||
reg [3:0] wr_ptr;
|
||||
reg [3:0] rd_ptr;
|
||||
reg [3:0] count;
|
||||
|
||||
assign full = (count == DEPTH);
|
||||
assign empty = (count == 0);
|
||||
assign rd_data = fifo[rd_ptr];
|
||||
|
||||
initial begin
|
||||
wr_ptr = 0;
|
||||
rd_ptr = 0;
|
||||
count = 0;
|
||||
end
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (wr_en && !full) begin
|
||||
fifo[wr_ptr] <= wr_data;
|
||||
wr_ptr <= (wr_ptr + 1) % DEPTH;
|
||||
count <= count + 1;
|
||||
end
|
||||
|
||||
if (rd_en && !empty) begin
|
||||
rd_ptr <= (rd_ptr + 1) % DEPTH;
|
||||
count <= count - 1;
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
143
Semaine_4/UART_FIFO/IP/verilog/other_rx.v
Normal file
143
Semaine_4/UART_FIFO/IP/verilog/other_rx.v
Normal file
@@ -0,0 +1,143 @@
|
||||
module other_uart_rx
|
||||
#(
|
||||
parameter CLK_FRE = 27, //clock frequency(Mhz)
|
||||
parameter BAUD_RATE = 115200 //serial baud rate
|
||||
)
|
||||
(
|
||||
input clk, //clock input
|
||||
input rst_n, //asynchronous reset input, low active
|
||||
output reg[7:0] rx_data, //received serial data
|
||||
output reg rx_data_valid, //received serial data is valid
|
||||
input rx_data_ready, //data receiver module ready
|
||||
input rx_pin //serial data input
|
||||
);
|
||||
//calculates the clock cycle for baud rate
|
||||
localparam CYCLE = CLK_FRE * 1000000 / BAUD_RATE;
|
||||
//state machine code
|
||||
localparam S_IDLE = 1;
|
||||
localparam S_START = 2; //start bit
|
||||
localparam S_REC_BYTE = 3; //data bits
|
||||
localparam S_STOP = 4; //stop bit
|
||||
localparam S_DATA = 5;
|
||||
|
||||
reg[2:0] state;
|
||||
reg[2:0] next_state;
|
||||
reg rx_d0; //delay 1 clock for rx_pin
|
||||
reg rx_d1; //delay 1 clock for rx_d0
|
||||
wire rx_negedge; //negedge of rx_pin
|
||||
reg[7:0] rx_bits; //temporary storage of received data
|
||||
reg[15:0] cycle_cnt; //baud counter
|
||||
reg[2:0] bit_cnt; //bit counter
|
||||
|
||||
assign rx_negedge = rx_d1 && ~rx_d0;
|
||||
|
||||
always@(posedge clk or negedge rst_n)
|
||||
begin
|
||||
if(rst_n == 1'b0)
|
||||
begin
|
||||
rx_d0 <= 1'b0;
|
||||
rx_d1 <= 1'b0;
|
||||
end
|
||||
else
|
||||
begin
|
||||
rx_d0 <= rx_pin;
|
||||
rx_d1 <= rx_d0;
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
always@(posedge clk or negedge rst_n)
|
||||
begin
|
||||
if(rst_n == 1'b0)
|
||||
state <= S_IDLE;
|
||||
else
|
||||
state <= next_state;
|
||||
end
|
||||
|
||||
always@(*)
|
||||
begin
|
||||
case(state)
|
||||
S_IDLE:
|
||||
if(rx_negedge)
|
||||
next_state <= S_START;
|
||||
else
|
||||
next_state <= S_IDLE;
|
||||
S_START:
|
||||
if(cycle_cnt == CYCLE - 1)//one data cycle
|
||||
next_state <= S_REC_BYTE;
|
||||
else
|
||||
next_state <= S_START;
|
||||
S_REC_BYTE:
|
||||
if(cycle_cnt == CYCLE - 1 && bit_cnt == 3'd7) //receive 8bit data
|
||||
next_state <= S_STOP;
|
||||
else
|
||||
next_state <= S_REC_BYTE;
|
||||
S_STOP:
|
||||
if(cycle_cnt == CYCLE/2 - 1)//half bit cycle,to avoid missing the next byte receiver
|
||||
next_state <= S_DATA;
|
||||
else
|
||||
next_state <= S_STOP;
|
||||
S_DATA:
|
||||
if(rx_data_ready) //data receive complete
|
||||
next_state <= S_IDLE;
|
||||
else
|
||||
next_state <= S_DATA;
|
||||
default:
|
||||
next_state <= S_IDLE;
|
||||
endcase
|
||||
end
|
||||
|
||||
always@(posedge clk or negedge rst_n)
|
||||
begin
|
||||
if(rst_n == 1'b0)
|
||||
rx_data_valid <= 1'b0;
|
||||
else if(state == S_STOP && next_state != state)
|
||||
rx_data_valid <= 1'b1;
|
||||
else if(state == S_DATA && rx_data_ready)
|
||||
rx_data_valid <= 1'b0;
|
||||
end
|
||||
|
||||
always@(posedge clk or negedge rst_n)
|
||||
begin
|
||||
if(rst_n == 1'b0)
|
||||
rx_data <= 8'd0;
|
||||
else if(state == S_STOP && next_state != state)
|
||||
rx_data <= rx_bits;//latch received data
|
||||
end
|
||||
|
||||
always@(posedge clk or negedge rst_n)
|
||||
begin
|
||||
if(rst_n == 1'b0)
|
||||
begin
|
||||
bit_cnt <= 3'd0;
|
||||
end
|
||||
else if(state == S_REC_BYTE)
|
||||
if(cycle_cnt == CYCLE - 1)
|
||||
bit_cnt <= bit_cnt + 3'd1;
|
||||
else
|
||||
bit_cnt <= bit_cnt;
|
||||
else
|
||||
bit_cnt <= 3'd0;
|
||||
end
|
||||
|
||||
|
||||
always@(posedge clk or negedge rst_n)
|
||||
begin
|
||||
if(rst_n == 1'b0)
|
||||
cycle_cnt <= 16'd0;
|
||||
else if((state == S_REC_BYTE && cycle_cnt == CYCLE - 1) || next_state != state)
|
||||
cycle_cnt <= 16'd0;
|
||||
else
|
||||
cycle_cnt <= cycle_cnt + 16'd1;
|
||||
end
|
||||
//receive serial data bit data
|
||||
always@(posedge clk or negedge rst_n)
|
||||
begin
|
||||
if(rst_n == 1'b0)
|
||||
rx_bits <= 8'd0;
|
||||
else if(state == S_REC_BYTE && cycle_cnt == CYCLE/2 - 1)
|
||||
rx_bits[bit_cnt] <= rx_pin;
|
||||
else
|
||||
rx_bits <= rx_bits;
|
||||
end
|
||||
endmodule
|
133
Semaine_4/UART_FIFO/IP/verilog/other_tx.v
Normal file
133
Semaine_4/UART_FIFO/IP/verilog/other_tx.v
Normal file
@@ -0,0 +1,133 @@
|
||||
module other_uart_tx
|
||||
#(
|
||||
parameter CLK_FRE = 27, //clock frequency(Mhz)
|
||||
parameter BAUD_RATE = 115200 //serial baud rate
|
||||
)
|
||||
(
|
||||
input clk, //clock input
|
||||
input rst_n, //asynchronous reset input, low active
|
||||
input[7:0] tx_data, //data to send
|
||||
input tx_data_valid, //data to be sent is valid
|
||||
output reg tx_data_ready, //send ready
|
||||
output tx_pin //serial data output
|
||||
);
|
||||
//calculates the clock cycle for baud rate
|
||||
localparam CYCLE = CLK_FRE * 1000000 / BAUD_RATE;
|
||||
//state machine code
|
||||
localparam S_IDLE = 1;
|
||||
localparam S_START = 2;//start bit
|
||||
localparam S_SEND_BYTE = 3;//data bits
|
||||
localparam S_STOP = 4;//stop bit
|
||||
reg[2:0] state;
|
||||
reg[2:0] next_state;
|
||||
reg[15:0] cycle_cnt; //baud counter
|
||||
reg[2:0] bit_cnt;//bit counter
|
||||
reg[7:0] tx_data_latch; //latch data to send
|
||||
reg tx_reg; //serial data output
|
||||
assign tx_pin = tx_reg;
|
||||
always@(posedge clk or negedge rst_n)
|
||||
begin
|
||||
if(rst_n == 1'b0)
|
||||
state <= S_IDLE;
|
||||
else
|
||||
state <= next_state;
|
||||
end
|
||||
|
||||
always@(*)
|
||||
begin
|
||||
case(state)
|
||||
S_IDLE:
|
||||
if(tx_data_valid == 1'b1)
|
||||
next_state <= S_START;
|
||||
else
|
||||
next_state <= S_IDLE;
|
||||
S_START:
|
||||
if(cycle_cnt == CYCLE - 1)
|
||||
next_state <= S_SEND_BYTE;
|
||||
else
|
||||
next_state <= S_START;
|
||||
S_SEND_BYTE:
|
||||
if(cycle_cnt == CYCLE - 1 && bit_cnt == 3'd7)
|
||||
next_state <= S_STOP;
|
||||
else
|
||||
next_state <= S_SEND_BYTE;
|
||||
S_STOP:
|
||||
if(cycle_cnt == CYCLE - 1)
|
||||
next_state <= S_IDLE;
|
||||
else
|
||||
next_state <= S_STOP;
|
||||
default:
|
||||
next_state <= S_IDLE;
|
||||
endcase
|
||||
end
|
||||
always@(posedge clk or negedge rst_n)
|
||||
begin
|
||||
if(rst_n == 1'b0)
|
||||
begin
|
||||
tx_data_ready <= 1'b0;
|
||||
end
|
||||
else if(state == S_IDLE)
|
||||
if(tx_data_valid == 1'b1)
|
||||
tx_data_ready <= 1'b0;
|
||||
else
|
||||
tx_data_ready <= 1'b1;
|
||||
else if(state == S_STOP && cycle_cnt == CYCLE - 1)
|
||||
tx_data_ready <= 1'b1;
|
||||
end
|
||||
|
||||
|
||||
always@(posedge clk or negedge rst_n)
|
||||
begin
|
||||
if(rst_n == 1'b0)
|
||||
begin
|
||||
tx_data_latch <= 8'd0;
|
||||
end
|
||||
else if(state == S_IDLE && tx_data_valid == 1'b1)
|
||||
tx_data_latch <= tx_data;
|
||||
|
||||
end
|
||||
|
||||
always@(posedge clk or negedge rst_n)
|
||||
begin
|
||||
if(rst_n == 1'b0)
|
||||
begin
|
||||
bit_cnt <= 3'd0;
|
||||
end
|
||||
else if(state == S_SEND_BYTE)
|
||||
if(cycle_cnt == CYCLE - 1)
|
||||
bit_cnt <= bit_cnt + 3'd1;
|
||||
else
|
||||
bit_cnt <= bit_cnt;
|
||||
else
|
||||
bit_cnt <= 3'd0;
|
||||
end
|
||||
|
||||
|
||||
always@(posedge clk or negedge rst_n)
|
||||
begin
|
||||
if(rst_n == 1'b0)
|
||||
cycle_cnt <= 16'd0;
|
||||
else if((state == S_SEND_BYTE && cycle_cnt == CYCLE - 1) || next_state != state)
|
||||
cycle_cnt <= 16'd0;
|
||||
else
|
||||
cycle_cnt <= cycle_cnt + 16'd1;
|
||||
end
|
||||
|
||||
always@(posedge clk or negedge rst_n)
|
||||
begin
|
||||
if(rst_n == 1'b0)
|
||||
tx_reg <= 1'b1;
|
||||
else
|
||||
case(state)
|
||||
S_IDLE,S_STOP:
|
||||
tx_reg <= 1'b1;
|
||||
S_START:
|
||||
tx_reg <= 1'b0;
|
||||
S_SEND_BYTE:
|
||||
tx_reg <= tx_data_latch[bit_cnt];
|
||||
default:
|
||||
tx_reg <= 1'b1;
|
||||
endcase
|
||||
end
|
||||
|
||||
endmodule
|
145
Semaine_4/UART_FIFO/IP/verilog/uart_rx.v
Normal file
145
Semaine_4/UART_FIFO/IP/verilog/uart_rx.v
Normal file
@@ -0,0 +1,145 @@
|
||||
module uart_rx #(
|
||||
parameter CLK_FREQ = 27_000_000,
|
||||
parameter BAUD_RATE = 115200
|
||||
)(
|
||||
input clk, //clock input
|
||||
input rst_p, //asynchronous reset input, high active
|
||||
input rx_enable, //data receiver module ready
|
||||
input rx_pin, //serial data input
|
||||
|
||||
output reg[7:0] rx_data, //received serial data
|
||||
output reg rx_received //received serial data is valid
|
||||
);
|
||||
|
||||
localparam CYCLE = CLK_FREQ / BAUD_RATE;
|
||||
|
||||
//state machine code
|
||||
localparam S_IDLE = 1;
|
||||
localparam S_START = 2; //start bit
|
||||
localparam S_REC_BYTE = 3; //data bits
|
||||
localparam S_STOP = 4; //stop bit
|
||||
localparam S_DATA = 5;
|
||||
|
||||
reg[2:0] state;
|
||||
reg[2:0] next_state;
|
||||
|
||||
reg rx_d0; //delay 1 clock for rx_pin
|
||||
reg rx_d1; //delay 1 clock for rx_d0
|
||||
wire rx_negedge; //negedge of rx_pin
|
||||
reg[7:0] rx_bits; //temporary storage of received data
|
||||
reg[15:0] cycle_cnt; //baud counter
|
||||
reg[2:0] bit_cnt; //bit counter
|
||||
|
||||
assign rx_negedge = rx_d1 && ~rx_d0; // Front déscendant
|
||||
|
||||
always@(posedge clk or posedge rst_p) // Filtrage du signial
|
||||
begin
|
||||
if(rst_p == 1'b1)begin
|
||||
rx_d0 <= 1'b0;
|
||||
rx_d1 <= 1'b0;
|
||||
|
||||
end else begin
|
||||
rx_d0 <= rx_pin;
|
||||
rx_d1 <= rx_d0;
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
always@(posedge clk or posedge rst_p)begin // Compteur d'etat
|
||||
if(rst_p == 1'b1)
|
||||
state <= S_IDLE;
|
||||
else
|
||||
state <= next_state;
|
||||
end
|
||||
|
||||
always@(*)begin
|
||||
case(state)
|
||||
S_IDLE:
|
||||
if(rx_negedge) // Detection du start bit
|
||||
next_state = S_START;
|
||||
else
|
||||
next_state = S_IDLE;
|
||||
|
||||
S_START:
|
||||
if(cycle_cnt == CYCLE - 1) //one data cycle
|
||||
next_state = S_REC_BYTE;
|
||||
else
|
||||
next_state = S_START;
|
||||
|
||||
S_REC_BYTE:
|
||||
if(cycle_cnt == CYCLE - 1 && bit_cnt == 3'd7) //receive 8bit data
|
||||
next_state = S_STOP;
|
||||
else
|
||||
next_state = S_REC_BYTE;
|
||||
|
||||
S_STOP:
|
||||
if(cycle_cnt == CYCLE/2 - 1) //half bit cycle,to avoid missing the next byte receiver
|
||||
next_state = S_DATA;
|
||||
else
|
||||
next_state = S_STOP;
|
||||
|
||||
S_DATA:
|
||||
if(rx_enable) //data receive complete
|
||||
next_state = S_IDLE;
|
||||
else
|
||||
next_state = S_DATA;
|
||||
|
||||
default:
|
||||
next_state = S_IDLE;
|
||||
endcase
|
||||
end
|
||||
|
||||
always@(posedge clk or posedge rst_p)
|
||||
begin
|
||||
if(rst_p == 1'b1)
|
||||
rx_received <= 1'b0;
|
||||
else if(state == S_STOP && next_state != state)
|
||||
rx_received <= 1'b1;
|
||||
else if(state == S_DATA && rx_enable)
|
||||
rx_received <= 1'b0;
|
||||
end
|
||||
|
||||
always@(posedge clk or posedge rst_p)
|
||||
begin
|
||||
if(rst_p == 1'b1)
|
||||
rx_data <= 8'd0;
|
||||
else if(state == S_STOP && next_state != state)
|
||||
rx_data <= rx_bits;//latch received data
|
||||
end
|
||||
|
||||
always@(posedge clk or posedge rst_p)
|
||||
begin
|
||||
if(rst_p == 1'b1)
|
||||
begin
|
||||
bit_cnt <= 3'd0;
|
||||
end
|
||||
else if(state == S_REC_BYTE)
|
||||
if(cycle_cnt == CYCLE - 1)
|
||||
bit_cnt <= bit_cnt + 3'd1;
|
||||
else
|
||||
bit_cnt <= bit_cnt;
|
||||
else
|
||||
bit_cnt <= 3'd0;
|
||||
end
|
||||
|
||||
|
||||
always@(posedge clk or posedge rst_p)
|
||||
begin
|
||||
if(rst_p == 1'b1)
|
||||
cycle_cnt <= 16'd0;
|
||||
else if((state == S_REC_BYTE && cycle_cnt == CYCLE - 1) || next_state != state)
|
||||
cycle_cnt <= 16'd0;
|
||||
else
|
||||
cycle_cnt <= cycle_cnt + 16'd1;
|
||||
end
|
||||
//receive serial data bit data
|
||||
always@(posedge clk or posedge rst_p)
|
||||
begin
|
||||
if(rst_p == 1'b1)
|
||||
rx_bits <= 8'd0;
|
||||
else if(state == S_REC_BYTE && cycle_cnt == CYCLE/2 - 1)
|
||||
rx_bits[bit_cnt] <= rx_pin;
|
||||
else
|
||||
rx_bits <= rx_bits;
|
||||
end
|
||||
endmodule
|
131
Semaine_4/UART_FIFO/IP/verilog/uart_tx.v
Normal file
131
Semaine_4/UART_FIFO/IP/verilog/uart_tx.v
Normal file
@@ -0,0 +1,131 @@
|
||||
module uart_tx #(
|
||||
parameter CLK_FREQ = 27_000_000,
|
||||
parameter BAUD_RATE = 115200
|
||||
)(
|
||||
input wire clk,
|
||||
input wire rst_p,
|
||||
input wire[7:0] data,
|
||||
input wire tx_enable,
|
||||
|
||||
output reg tx_ready,
|
||||
output wire tx
|
||||
);
|
||||
|
||||
localparam CYCLE = CLK_FREQ / BAUD_RATE;
|
||||
|
||||
localparam IDLE = 2'd0;
|
||||
localparam START = 2'd1;
|
||||
localparam DATA = 2'd2;
|
||||
localparam STOP = 2'd3;
|
||||
|
||||
reg [1:0] state = IDLE;
|
||||
reg [1:0] next_state;
|
||||
reg [15:0] cycle_cnt; //baud counter
|
||||
reg tx_reg;
|
||||
reg [2:0] bit_cnt;
|
||||
reg [7:0] tx_data_latch = 0;
|
||||
|
||||
|
||||
assign tx = tx_reg;
|
||||
|
||||
always@(posedge clk or posedge rst_p)begin // Avance d'etat
|
||||
if(rst_p == 1'b1)
|
||||
state <= IDLE;
|
||||
else
|
||||
state <= next_state;
|
||||
end
|
||||
|
||||
always@(*) begin
|
||||
case(state)
|
||||
IDLE:
|
||||
if(tx_enable == 1'b1)
|
||||
next_state = START;
|
||||
else
|
||||
next_state = IDLE;
|
||||
|
||||
START:
|
||||
if(cycle_cnt == CYCLE - 1)
|
||||
next_state = DATA;
|
||||
else
|
||||
next_state = START;
|
||||
|
||||
DATA:
|
||||
if(cycle_cnt == CYCLE - 1 && bit_cnt == 3'd7)
|
||||
next_state = STOP;
|
||||
else
|
||||
next_state = DATA;
|
||||
|
||||
STOP:
|
||||
if(cycle_cnt == CYCLE - 1)
|
||||
next_state = IDLE;
|
||||
else
|
||||
next_state = STOP;
|
||||
default:
|
||||
next_state = IDLE;
|
||||
endcase
|
||||
end
|
||||
|
||||
always@(posedge clk or posedge rst_p)begin // tx_ready block
|
||||
if(rst_p == 1'b1)
|
||||
tx_ready <= 1'b0; // Reset
|
||||
else if(state == IDLE && tx_enable == 1'b1)
|
||||
tx_ready <= 1'b0; // Pas prêt tant que les données sont valides
|
||||
else if(state == IDLE)
|
||||
tx_ready <= 1'b1;
|
||||
else if(state == STOP && cycle_cnt == CYCLE - 1)
|
||||
tx_ready <= 1'b1; // Prêt une fois le bit STOP envoyé
|
||||
else
|
||||
tx_ready <= tx_ready; // Reste inchangé dans d'autres cas
|
||||
end
|
||||
|
||||
|
||||
|
||||
always@(posedge clk or posedge rst_p) begin // tx_data_latch block
|
||||
if(rst_p == 1'b1) begin
|
||||
tx_data_latch <= 8'd0;
|
||||
end else if(state == IDLE && tx_enable == 1'b1) begin
|
||||
tx_data_latch <= data; // Charger les données de data dans tx_data_latch
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
always@(posedge clk or posedge rst_p)begin // DATA bit_cnt block
|
||||
if(rst_p == 1'b1)begin
|
||||
bit_cnt <= 3'd0;
|
||||
|
||||
end else if(state == DATA)
|
||||
if(cycle_cnt == CYCLE - 1)
|
||||
bit_cnt <= bit_cnt + 3'd1;
|
||||
else
|
||||
bit_cnt <= bit_cnt;
|
||||
else
|
||||
bit_cnt <= 3'd0;
|
||||
end
|
||||
|
||||
|
||||
always@(posedge clk or posedge rst_p)begin // Cycle counter
|
||||
if(rst_p == 1'b1)
|
||||
cycle_cnt <= 16'd0;
|
||||
|
||||
else if((state == DATA && cycle_cnt == CYCLE - 1) || next_state != state)
|
||||
cycle_cnt <= 16'd0;
|
||||
else
|
||||
cycle_cnt <= cycle_cnt + 16'd1;
|
||||
end
|
||||
|
||||
always@(posedge clk or posedge rst_p)begin // tx state managment
|
||||
if(rst_p == 1'b1)
|
||||
tx_reg <= 1'b1;
|
||||
else
|
||||
case(state)
|
||||
IDLE,STOP:
|
||||
tx_reg <= 1'b1;
|
||||
START:
|
||||
tx_reg <= 1'b0;
|
||||
DATA:
|
||||
tx_reg <= tx_data_latch[bit_cnt]; // SENDING BYTE HERE
|
||||
default:
|
||||
tx_reg <= 1'b1;
|
||||
endcase
|
||||
end
|
||||
endmodule
|
@@ -1,3 +1,3 @@
|
||||
@echo off
|
||||
echo === Lancement de GTKWave ===
|
||||
gtkwave runs/uart.vcd
|
||||
gtkwave runs/uart_tx_fifo.vcd
|
||||
|
@@ -6,7 +6,7 @@ setlocal enabledelayedexpansion
|
||||
set OUT=runs/sim.vvp
|
||||
|
||||
:: Top-level testbench module
|
||||
set TOP=tb_uart
|
||||
set TOP=tb_uart_tx_fifo
|
||||
|
||||
:: Répertoires contenant des fichiers .v
|
||||
set DIRS=src/verilog tests/verilog IP/verilog
|
||||
|
@@ -1,145 +1,68 @@
|
||||
module uart_rx #(
|
||||
module uart_rx_fifo #(
|
||||
parameter CLK_FREQ = 27_000_000,
|
||||
parameter BAUD_RATE = 115200
|
||||
parameter BAUD_RATE = 115200,
|
||||
parameter FIFO_DEPTH = 8
|
||||
)(
|
||||
input clk, //clock input
|
||||
input rst_p, //asynchronous reset input, high active
|
||||
input rx_enable, //data receiver module ready
|
||||
input rx_pin, //serial data input
|
||||
|
||||
output reg[7:0] rx_data, //received serial data
|
||||
output reg rx_received //received serial data is valid
|
||||
input clk,
|
||||
input rd_en,
|
||||
output reg [7:0] rd_data,
|
||||
input rx_pin,
|
||||
output data_available
|
||||
);
|
||||
|
||||
localparam CYCLE = CLK_FREQ / BAUD_RATE;
|
||||
// UART RX wires
|
||||
wire [7:0] rx_data;
|
||||
wire rx_received;
|
||||
|
||||
//state machine code
|
||||
localparam S_IDLE = 1;
|
||||
localparam S_START = 2; //start bit
|
||||
localparam S_REC_BYTE = 3; //data bits
|
||||
localparam S_STOP = 4; //stop bit
|
||||
localparam S_DATA = 5;
|
||||
// FIFO control
|
||||
reg wr_en;
|
||||
wire fifo_empty;
|
||||
wire fifo_full;
|
||||
wire [7:0] fifo_rd_data;
|
||||
|
||||
reg[2:0] state;
|
||||
reg[2:0] next_state;
|
||||
// UART Receiver instance
|
||||
uart_rx #(
|
||||
.CLK_FREQ(CLK_FREQ),
|
||||
.BAUD_RATE(BAUD_RATE)
|
||||
) uart_rx_inst (
|
||||
.clk(clk),
|
||||
.rst_p(1'b0),
|
||||
.rx_enable(1'b1),
|
||||
.rx_pin(rx_pin),
|
||||
.rx_data(rx_data),
|
||||
.rx_received(rx_received)
|
||||
);
|
||||
|
||||
reg rx_d0; //delay 1 clock for rx_pin
|
||||
reg rx_d1; //delay 1 clock for rx_d0
|
||||
wire rx_negedge; //negedge of rx_pin
|
||||
reg[7:0] rx_bits; //temporary storage of received data
|
||||
reg[15:0] cycle_cnt; //baud counter
|
||||
reg[2:0] bit_cnt; //bit counter
|
||||
// FIFO instance
|
||||
fifo #(
|
||||
.WIDTH(8),
|
||||
.DEPTH(FIFO_DEPTH)
|
||||
) fifo_inst (
|
||||
.clk(clk),
|
||||
.wr_en(wr_en),
|
||||
.wr_data(rx_data),
|
||||
.rd_en(rd_en),
|
||||
.rd_data(fifo_rd_data),
|
||||
.empty(fifo_empty),
|
||||
.full(fifo_full)
|
||||
);
|
||||
|
||||
assign rx_negedge = rx_d1 && ~rx_d0; // Front déscendant
|
||||
assign data_available = ~fifo_empty;
|
||||
|
||||
always@(posedge clk or posedge rst_p) // Filtrage du signial
|
||||
begin
|
||||
if(rst_p == 1'b1)begin
|
||||
rx_d0 <= 1'b0;
|
||||
rx_d1 <= 1'b0;
|
||||
|
||||
end else begin
|
||||
rx_d0 <= rx_pin;
|
||||
rx_d1 <= rx_d0;
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
always@(posedge clk or posedge rst_p)begin // Compteur d'etat
|
||||
if(rst_p == 1'b1)
|
||||
state <= S_IDLE;
|
||||
else
|
||||
state <= next_state;
|
||||
end
|
||||
|
||||
always@(*)begin
|
||||
case(state)
|
||||
S_IDLE:
|
||||
if(rx_negedge) // Detection du start bit
|
||||
next_state = S_START;
|
||||
else
|
||||
next_state = S_IDLE;
|
||||
|
||||
S_START:
|
||||
if(cycle_cnt == CYCLE - 1) //one data cycle
|
||||
next_state = S_REC_BYTE;
|
||||
else
|
||||
next_state = S_START;
|
||||
|
||||
S_REC_BYTE:
|
||||
if(cycle_cnt == CYCLE - 1 && bit_cnt == 3'd7) //receive 8bit data
|
||||
next_state = S_STOP;
|
||||
else
|
||||
next_state = S_REC_BYTE;
|
||||
|
||||
S_STOP:
|
||||
if(cycle_cnt == CYCLE/2 - 1) //half bit cycle,to avoid missing the next byte receiver
|
||||
next_state = S_DATA;
|
||||
else
|
||||
next_state = S_STOP;
|
||||
|
||||
S_DATA:
|
||||
if(rx_enable) //data receive complete
|
||||
next_state = S_IDLE;
|
||||
else
|
||||
next_state = S_DATA;
|
||||
|
||||
default:
|
||||
next_state = S_IDLE;
|
||||
endcase
|
||||
end
|
||||
|
||||
always@(posedge clk or posedge rst_p)
|
||||
begin
|
||||
if(rst_p == 1'b1)
|
||||
rx_received <= 1'b0;
|
||||
else if(state == S_STOP && next_state != state)
|
||||
rx_received <= 1'b1;
|
||||
else if(state == S_DATA && rx_enable)
|
||||
rx_received <= 1'b0;
|
||||
end
|
||||
|
||||
always@(posedge clk or posedge rst_p)
|
||||
begin
|
||||
if(rst_p == 1'b1)
|
||||
rx_data <= 8'd0;
|
||||
else if(state == S_STOP && next_state != state)
|
||||
rx_data <= rx_bits;//latch received data
|
||||
end
|
||||
|
||||
always@(posedge clk or posedge rst_p)
|
||||
begin
|
||||
if(rst_p == 1'b1)
|
||||
begin
|
||||
bit_cnt <= 3'd0;
|
||||
// Enregistrement explicite des données lues pour stabilité
|
||||
always @(posedge clk) begin
|
||||
if (rd_en && !fifo_empty) begin
|
||||
rd_data <= fifo_rd_data;
|
||||
end
|
||||
else if(state == S_REC_BYTE)
|
||||
if(cycle_cnt == CYCLE - 1)
|
||||
bit_cnt <= bit_cnt + 3'd1;
|
||||
else
|
||||
bit_cnt <= bit_cnt;
|
||||
else
|
||||
bit_cnt <= 3'd0;
|
||||
end
|
||||
end
|
||||
|
||||
// Écriture dans la FIFO uniquement si donnée reçue ET FIFO pas pleine
|
||||
always @(posedge clk) begin
|
||||
if (rx_received && !fifo_full) begin
|
||||
wr_en <= 1'b1;
|
||||
end else begin
|
||||
wr_en <= 1'b0;
|
||||
end
|
||||
end
|
||||
|
||||
always@(posedge clk or posedge rst_p)
|
||||
begin
|
||||
if(rst_p == 1'b1)
|
||||
cycle_cnt <= 16'd0;
|
||||
else if((state == S_REC_BYTE && cycle_cnt == CYCLE - 1) || next_state != state)
|
||||
cycle_cnt <= 16'd0;
|
||||
else
|
||||
cycle_cnt <= cycle_cnt + 16'd1;
|
||||
end
|
||||
//receive serial data bit data
|
||||
always@(posedge clk or posedge rst_p)
|
||||
begin
|
||||
if(rst_p == 1'b1)
|
||||
rx_bits <= 8'd0;
|
||||
else if(state == S_REC_BYTE && cycle_cnt == CYCLE/2 - 1)
|
||||
rx_bits[bit_cnt] <= rx_pin;
|
||||
else
|
||||
rx_bits <= rx_bits;
|
||||
end
|
||||
endmodule
|
@@ -1,131 +1,86 @@
|
||||
module uart_tx #(
|
||||
parameter CLK_FREQ = 27_000_000,
|
||||
parameter BAUD_RATE = 115200
|
||||
module uart_tx_fifo #(
|
||||
parameter CLK_FREQ = 27_000_000,
|
||||
parameter BAUD_RATE = 115200,
|
||||
parameter FIFO_DEPTH = 8
|
||||
)(
|
||||
input wire clk,
|
||||
input wire rst_p,
|
||||
input wire[7:0] data,
|
||||
input wire tx_enable,
|
||||
|
||||
output reg tx_ready,
|
||||
output wire tx
|
||||
input clk,
|
||||
input wr_en,
|
||||
input [7:0] wr_data,
|
||||
output tx_pin,
|
||||
output fifo_full
|
||||
);
|
||||
|
||||
localparam CYCLE = CLK_FREQ / BAUD_RATE;
|
||||
// FIFO wires
|
||||
wire [7:0] fifo_rd_data;
|
||||
wire fifo_empty;
|
||||
reg fifo_rd_en;
|
||||
|
||||
localparam IDLE = 2'd0;
|
||||
localparam START = 2'd1;
|
||||
localparam DATA = 2'd2;
|
||||
localparam STOP = 2'd3;
|
||||
// UART wires
|
||||
wire tx_ready;
|
||||
reg uart_tx_enable;
|
||||
reg [7:0] uart_tx_data;
|
||||
|
||||
reg [1:0] state = IDLE;
|
||||
reg [1:0] next_state;
|
||||
reg [15:0] cycle_cnt; //baud counter
|
||||
reg tx_reg;
|
||||
reg [2:0] bit_cnt;
|
||||
reg [7:0] tx_data_latch = 0;
|
||||
// FSM
|
||||
typedef enum logic [1:0] {
|
||||
IDLE,
|
||||
WAIT_READY,
|
||||
SEND
|
||||
} state_t;
|
||||
|
||||
state_t state = IDLE;
|
||||
|
||||
assign tx = tx_reg;
|
||||
// FIFO instantiation
|
||||
fifo #(
|
||||
.WIDTH(8),
|
||||
.DEPTH(FIFO_DEPTH)
|
||||
) fifo_inst (
|
||||
.clk(clk),
|
||||
.wr_en(wr_en),
|
||||
.wr_data(wr_data),
|
||||
.rd_en(fifo_rd_en),
|
||||
.rd_data(fifo_rd_data),
|
||||
.empty(fifo_empty),
|
||||
.full(fifo_full)
|
||||
);
|
||||
|
||||
always@(posedge clk or posedge rst_p)begin // Avance d'etat
|
||||
if(rst_p == 1'b1)
|
||||
state <= IDLE;
|
||||
else
|
||||
state <= next_state;
|
||||
end
|
||||
// UART TX instantiation
|
||||
uart_tx #(
|
||||
.CLK_FREQ(CLK_FREQ),
|
||||
.BAUD_RATE(BAUD_RATE)
|
||||
) uart_tx_inst (
|
||||
.clk(clk),
|
||||
.rst_p(1'b0),
|
||||
.data(uart_tx_data),
|
||||
.tx_enable(uart_tx_enable),
|
||||
.tx_ready(tx_ready),
|
||||
.tx(tx_pin)
|
||||
);
|
||||
|
||||
always@(*) begin
|
||||
case(state)
|
||||
IDLE:
|
||||
if(tx_enable == 1'b1)
|
||||
next_state = START;
|
||||
else
|
||||
next_state = IDLE;
|
||||
always_ff @(posedge clk) begin
|
||||
// Valeurs par défaut
|
||||
fifo_rd_en <= 0;
|
||||
uart_tx_enable <= 0;
|
||||
|
||||
START:
|
||||
if(cycle_cnt == CYCLE - 1)
|
||||
next_state = DATA;
|
||||
else
|
||||
next_state = START;
|
||||
case (state)
|
||||
IDLE: begin
|
||||
if (!fifo_empty) begin
|
||||
state <= WAIT_READY;
|
||||
end
|
||||
end
|
||||
|
||||
DATA:
|
||||
if(cycle_cnt == CYCLE - 1 && bit_cnt == 3'd7)
|
||||
next_state = STOP;
|
||||
else
|
||||
next_state = DATA;
|
||||
WAIT_READY: begin
|
||||
if (tx_ready) begin
|
||||
fifo_rd_en <= 1;
|
||||
state <= SEND;
|
||||
end
|
||||
end
|
||||
|
||||
STOP:
|
||||
if(cycle_cnt == CYCLE - 1)
|
||||
next_state = IDLE;
|
||||
else
|
||||
next_state = STOP;
|
||||
default:
|
||||
next_state = IDLE;
|
||||
SEND: begin
|
||||
uart_tx_data <= fifo_rd_data;
|
||||
uart_tx_enable <= 1;
|
||||
state <= IDLE;
|
||||
end
|
||||
endcase
|
||||
end
|
||||
|
||||
always@(posedge clk or posedge rst_p)begin // tx_ready block
|
||||
if(rst_p == 1'b1)
|
||||
tx_ready <= 1'b0; // Reset
|
||||
else if(state == IDLE && tx_enable == 1'b1)
|
||||
tx_ready <= 1'b0; // Pas prêt tant que les données sont valides
|
||||
else if(state == IDLE)
|
||||
tx_ready <= 1'b1;
|
||||
else if(state == STOP && cycle_cnt == CYCLE - 1)
|
||||
tx_ready <= 1'b1; // Prêt une fois le bit STOP envoyé
|
||||
else
|
||||
tx_ready <= tx_ready; // Reste inchangé dans d'autres cas
|
||||
end
|
||||
|
||||
|
||||
|
||||
always@(posedge clk or posedge rst_p) begin // tx_data_latch block
|
||||
if(rst_p == 1'b1) begin
|
||||
tx_data_latch <= 8'd0;
|
||||
end else if(state == IDLE && tx_enable == 1'b1) begin
|
||||
tx_data_latch <= data; // Charger les données de `data` dans `tx_data_latch`
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
always@(posedge clk or posedge rst_p)begin // DATA bit_cnt block
|
||||
if(rst_p == 1'b1)begin
|
||||
bit_cnt <= 3'd0;
|
||||
|
||||
end else if(state == DATA)
|
||||
if(cycle_cnt == CYCLE - 1)
|
||||
bit_cnt <= bit_cnt + 3'd1;
|
||||
else
|
||||
bit_cnt <= bit_cnt;
|
||||
else
|
||||
bit_cnt <= 3'd0;
|
||||
end
|
||||
|
||||
|
||||
always@(posedge clk or posedge rst_p)begin // Cycle counter
|
||||
if(rst_p == 1'b1)
|
||||
cycle_cnt <= 16'd0;
|
||||
|
||||
else if((state == DATA && cycle_cnt == CYCLE - 1) || next_state != state)
|
||||
cycle_cnt <= 16'd0;
|
||||
else
|
||||
cycle_cnt <= cycle_cnt + 16'd1;
|
||||
end
|
||||
|
||||
always@(posedge clk or posedge rst_p)begin // tx state managment
|
||||
if(rst_p == 1'b1)
|
||||
tx_reg <= 1'b1;
|
||||
else
|
||||
case(state)
|
||||
IDLE,STOP:
|
||||
tx_reg <= 1'b1;
|
||||
START:
|
||||
tx_reg <= 1'b0;
|
||||
DATA:
|
||||
tx_reg <= tx_data_latch[bit_cnt]; // SENDING BYTE HERE
|
||||
default:
|
||||
tx_reg <= 1'b1;
|
||||
endcase
|
||||
end
|
||||
endmodule
|
@@ -1,6 +1,6 @@
|
||||
`timescale 1ns / 1ps
|
||||
|
||||
module tb_uart_rx;
|
||||
module tb_uart_rx_fifo;
|
||||
|
||||
reg clk = 0;
|
||||
reg rx;
|
||||
@@ -10,8 +10,8 @@ module tb_uart_rx;
|
||||
reg tx_data_valid;
|
||||
reg tx_data_ready;
|
||||
|
||||
reg rx_received;
|
||||
wire rx_enable = 1'b1; // Enable the receiver
|
||||
reg rd_en;
|
||||
wire data_available;
|
||||
|
||||
localparam CLK_FREQ = 27_000_000;
|
||||
localparam BAUD_RATE = 115_200;
|
||||
@@ -27,23 +27,24 @@ module tb_uart_rx;
|
||||
.rst_n(1'b1)
|
||||
);
|
||||
|
||||
uart_rx #(
|
||||
uart_rx_fifo #(
|
||||
.CLK_FREQ(CLK_FREQ),
|
||||
.BAUD_RATE(BAUD_RATE)
|
||||
) rx_instance (
|
||||
.BAUD_RATE(BAUD_RATE),
|
||||
.FIFO_DEPTH(8)
|
||||
) rx_fifo_instance (
|
||||
.clk(clk),
|
||||
.rx_pin(rx),
|
||||
.rx_data(data_out),
|
||||
.rx_received(rx_received),
|
||||
.rx_enable(rx_enable)
|
||||
.rd_en(rd_en),
|
||||
.rd_data(data_out),
|
||||
.data_available(data_available)
|
||||
);
|
||||
|
||||
always #(CLK_PERIOD_NS/2) clk = ~clk;
|
||||
|
||||
initial begin
|
||||
$dumpfile("runs/uart_rx.vcd");
|
||||
$dumpvars(0, tb_uart_rx);
|
||||
$display("======== Start UART RX test =========");
|
||||
$dumpfile("runs/uart_rx_fifo.vcd");
|
||||
$dumpvars(0, tb_uart_rx_fifo);
|
||||
$display("======== Start UART RX FIFO test =========");
|
||||
#100;
|
||||
|
||||
data_in = 8'd123; // Data to send
|
||||
@@ -56,12 +57,41 @@ module tb_uart_rx;
|
||||
|
||||
tx_data_valid = 1'b0; // Clear the valid signal
|
||||
|
||||
wait(rx_received); // Wait for the receiver to receive the data
|
||||
data_in = 8'd234; // Data to send
|
||||
wait(tx_data_ready); // Wait for the transmitter to be ready
|
||||
#1; // Small delay to ensure the data is latched
|
||||
|
||||
$display("Data sent: %d", data_in);
|
||||
tx_data_valid = 1'b1; // Indicate that the data is valid
|
||||
|
||||
wait(tx_data_ready == 0);
|
||||
|
||||
tx_data_valid = 1'b0; // Clear the valid signal
|
||||
|
||||
data_in = 8'd101; // Data to send
|
||||
wait(tx_data_ready); // Wait for the transmitter to be ready
|
||||
#1; // Small delay to ensure the data is latched
|
||||
|
||||
tx_data_valid = 1'b1; // Indicate that the data is valid
|
||||
|
||||
wait(tx_data_ready == 0);
|
||||
|
||||
tx_data_valid = 1'b0; // Clear the valid signal
|
||||
|
||||
wait(data_available); // Wait for the receiver to receive the data
|
||||
|
||||
rd_en = 1'b1; // Enable read from FIFO
|
||||
#37; // Small delay to ensure the data is read
|
||||
$display("Data received: %d", data_out); // Display the received data
|
||||
rd_en = 1'b0; // Disable read from FIFO
|
||||
#37; // Small delay to ensure the data is read
|
||||
|
||||
$display("======== END UART RX test =========");
|
||||
rd_en = 1'b1; // Enable read from FIFO
|
||||
#37; // Small delay to ensure the data is read
|
||||
$display("Data received: %d", data_out); // Display the received data
|
||||
rd_en = 1'b0; // Disable read from FIFO
|
||||
#37; // Small delay to ensure the data is read
|
||||
|
||||
$display("======== END UART RX FIFO test =========");
|
||||
$finish;
|
||||
end
|
||||
endmodule
|
||||
|
@@ -1,16 +1,17 @@
|
||||
`timescale 1ns/1ps
|
||||
|
||||
module tb_uart_tx;
|
||||
module tb_uart_tx_fifo;
|
||||
|
||||
reg clk = 0;
|
||||
reg tx_enable = 0;
|
||||
reg [7:0] data_in = 8'h00;
|
||||
reg [7:0] data_out;
|
||||
wire tx;
|
||||
reg tx_ready;
|
||||
|
||||
wire rx_recieved;
|
||||
|
||||
wire fifo_full;
|
||||
reg wr_en = 0;
|
||||
|
||||
always #18.5 clk = ~clk;
|
||||
|
||||
other_uart_rx rx_instance(
|
||||
@@ -22,55 +23,44 @@ module tb_uart_tx;
|
||||
.rx_data_ready(1'b1)
|
||||
);
|
||||
|
||||
uart_tx #(
|
||||
uart_tx_fifo #(
|
||||
.CLK_FREQ(27_000_000),
|
||||
.BAUD_RATE(115_200)
|
||||
)tx_instance (
|
||||
.BAUD_RATE(115_200),
|
||||
.FIFO_DEPTH(8)
|
||||
)tx_fifo_instance (
|
||||
.clk(clk),
|
||||
.tx_enable(tx_enable),
|
||||
.tx_ready(tx_ready),
|
||||
.data(data_in),
|
||||
.tx(tx),
|
||||
.rst_p(1'b0)
|
||||
.wr_en(wr_en),
|
||||
.wr_data(data_in),
|
||||
.tx_pin(tx),
|
||||
.fifo_full(fifo_full)
|
||||
);
|
||||
|
||||
initial begin
|
||||
$dumpfile("runs/uart_tx.vcd");
|
||||
$dumpvars(0, tb_uart_tx);
|
||||
$dumpfile("runs/uart_tx_fifo.vcd");
|
||||
$dumpvars(0, tb_uart_tx_fifo);
|
||||
|
||||
$display("======== Start UART TX test =========");
|
||||
$display("======== Start UART TX FIFO test =========");
|
||||
|
||||
#100;
|
||||
#50;
|
||||
|
||||
data_in <= 8'd234; // 234
|
||||
tx_enable <= 1;
|
||||
wait(tx_ready == 1'b0);
|
||||
tx_enable <= 0;
|
||||
data_in <= 8'd234;
|
||||
wr_en <= 1'b1; // Activer l'écriture dans la FIFO
|
||||
#37;
|
||||
wr_en <= 1'b0; // Désactiver l'écriture dans la FIFO
|
||||
|
||||
// Attendre
|
||||
wait (rx_recieved == 1'b1); // Attendre que le signal de reception soit actif
|
||||
data_in <= 8'd123;
|
||||
wr_en <= 1'b1; // Activer l'écriture dans la FIFO
|
||||
#37;
|
||||
wr_en <= 1'b0; // Désactiver l'écriture dans la FIFO
|
||||
|
||||
$display("Data received: %d", data_out); // Afficher la valeur recu
|
||||
$display("Data expected: %d", data_in); // Afficher la valeur envoyee
|
||||
data_in <= 8'd45;
|
||||
wr_en <= 1'b1; // Activer l'écriture dans la FIFO
|
||||
#37;
|
||||
wr_en <= 1'b0; // Désactiver l'écriture dans la FIFO
|
||||
|
||||
#1000;
|
||||
$display("======== END UART TX FIFO test =========");
|
||||
|
||||
wait(tx_ready == 1'b1); // Attendre que le signal de reception soit actif
|
||||
|
||||
data_in <= 8'd202; // 202
|
||||
tx_enable <= 1;
|
||||
wait(tx_ready == 1'b0);
|
||||
tx_enable <= 0;
|
||||
|
||||
// Attendre
|
||||
wait (rx_recieved == 1'b1); // Attendre que le signal de reception soit actif
|
||||
|
||||
$display("Data received: %d", data_out); // Afficher la valeur recu
|
||||
$display("Data expected: %d", data_in); // Afficher la valeur envoyee
|
||||
|
||||
$display("======== END UART TX test =========");
|
||||
|
||||
#1000;
|
||||
#1000000;
|
||||
$stop;
|
||||
end
|
||||
|
||||
|
Reference in New Issue
Block a user