1
0
forked from tanchou/Verilog

Add DHT11 interface and model, update testbench and scripts for simulation

This commit is contained in:
2025-05-20 15:55:21 +02:00
parent b3e646d854
commit cbebf620d5
16 changed files with 637 additions and 0 deletions

5
Semaine_6/DHT11/.gitignore vendored Normal file
View File

@@ -0,0 +1,5 @@
runs
.vscode
workspace.code-workspace
*.pyc
.idea

View File

@@ -0,0 +1,9 @@
# ULTRASON VIA UART
## Description
This project is designed to control an ultrasonic sensor using UART communication. The ultrasonic sensor is used to measure distance, and the data is transmitted via UART to a connected device.
## Commands
0x01: Start one mesurement of the distance.
0x02: Start continuous mesurement of the distance.
0x03: Stop continuous mesurement of the distance.

View File

@@ -0,0 +1,24 @@
IO_LOC "tx" 69;
IO_PORT "tx" IO_TYPE=LVCMOS33 PULL_MODE=UP BANK_VCCIO=3.3;
IO_LOC "rx" 70;
IO_PORT "rx" IO_TYPE=LVCMOS33 PULL_MODE=UP BANK_VCCIO=3.3;
IO_LOC "clk" 4;
IO_PORT "clk" IO_TYPE=LVCMOS33 PULL_MODE=UP BANK_VCCIO=3.3;
IO_LOC "ultrason_sig" 73;
IO_PORT "ultrason_sig" IO_TYPE=LVCMOS33 PULL_MODE=UP DRIVE=8 BANK_VCCIO=3.3;
IO_LOC "leds[0]" 15;
IO_PORT "leds[0]" PULL_MODE=UP DRIVE=8 BANK_VCCIO=1.8;
IO_LOC "leds[1]" 16;
IO_PORT "leds[1]" PULL_MODE=UP DRIVE=8 BANK_VCCIO=1.8;
IO_LOC "leds[2]" 17;
IO_PORT "leds[2]" PULL_MODE=UP DRIVE=8 BANK_VCCIO=1.8;
IO_LOC "leds[3]" 18;
IO_PORT "leds[3]" PULL_MODE=UP DRIVE=8 BANK_VCCIO=1.8;
IO_LOC "leds[4]" 19;
IO_PORT "leds[4]" PULL_MODE=UP DRIVE=8 BANK_VCCIO=1.8;
IO_LOC "leds[5]" 20;
IO_PORT "leds[5]" PULL_MODE=UP DRIVE=8 BANK_VCCIO=1.8;

View File

@@ -0,0 +1,6 @@
@call c:\oss-cad-suite\environment.bat
@echo off
if "%1"=="sim" call scripts\windows\simulate.bat
if "%1"=="wave" call scripts\windows\gtkwave.bat
if "%1"=="clean" call scripts\windows\clean.bat
if "%1"=="build" call scripts\windows\build.bat

24
Semaine_6/DHT11/project.sh Executable file
View File

@@ -0,0 +1,24 @@
#!/bin/bash
# Charger l'environnement OSS CAD Suite
source /home/louis/oss-cad-suite/environment
mkdir -p runs
case "$1" in
sim)
bash scripts/linux/simulate.sh
;;
wave)
bash scripts/linux/gtkwave.sh
;;
clean)
bash scripts/linux/clean.sh
;;
build)
bash scripts/linux/build.sh
;;
*)
echo "Usage: $0 {sim|wave|clean|build}"
;;
esac

View File

@@ -0,0 +1,46 @@
#!/bin/bash
# Aller à la racine du projet
cd "$(dirname "$0")/../.." || exit 1
# Config de base
DEVICE="GW2AR-LV18QN88C8/I7"
BOARD="tangnano20k"
TOP="top_uart_ultrason_command"
CST_FILE="$TOP.cst"
JSON_FILE="runs/$TOP.json"
PNR_JSON="runs/pnr_$TOP.json"
BITSTREAM="runs/$TOP.fs"
# Créer le dossier runs si nécessaire
mkdir -p runs
echo "=== Étape 1 : Synthèse avec Yosys ==="
yosys -p "read_verilog -sv src/verilog/$TOP.v IP/verilog/ultrasonic_fpga.v IP/verilog/uart_tx_fifo.v IP/verilog/uart_rx_fifo.v IP/verilog/rxuartlite.v IP/verilog/fifo.v IP/verilog/uart_tx.v; synth_gowin -top $TOP -json $JSON_FILE"
if [ $? -ne 0 ]; then
echo "=== Erreur lors de la synthèse ==="
exit 1
fi
echo "=== Étape 2 : Placement & Routage avec nextpnr-himbaechel ==="
nextpnr-himbaechel --json "$JSON_FILE" --write "$PNR_JSON" --device "$DEVICE" --vopt cst=constraints/"$CST_FILE" --vopt family=GW2A-18C
if [ $? -ne 0 ]; then
echo "=== Erreur lors du placement/routage ==="
exit 1
fi
echo "=== Étape 3 : Packing avec gowin_pack ==="
gowin_pack -d "$DEVICE" -o "$BITSTREAM" "$PNR_JSON"
if [ $? -ne 0 ]; then
echo "=== Erreur lors du packing ==="
exit 1
fi
echo "=== Étape 4 : Flash avec openFPGALoader ==="
openFPGALoader -b "$BOARD" "$BITSTREAM"
if [ $? -ne 0 ]; then
echo "=== Erreur lors du flash ==="
exit 1
fi
echo "=== Compilation et flash réussis ==="

View File

@@ -0,0 +1,4 @@
#!/bin/bash
echo "=== Nettoyage des fichiers générés ==="
rm -rf runs/*

View File

@@ -0,0 +1,5 @@
#!/bin/bash
echo "=== Lancement de GTKWave ==="
gtkwave runs/sim.vcd
echo "=== GTKWave terminé ==="

View File

@@ -0,0 +1,17 @@
#!/bin/bash
echo "=== Simulation avec Icarus Verilog ==="
OUT="runs/sim.vvp"
TOP="tb_dht11"
DIRS=("src/verilog" "tests/verilog")
FILES=()
for dir in "${DIRS[@]}"; do
for file in "$dir"/*.v; do
FILES+=("$file")
done
done
iverilog -g2012 -o "$OUT" -s "$TOP" "${FILES[@]}"
vvp "$OUT"

View File

@@ -0,0 +1,45 @@
@echo off
setlocal
rem === Aller à la racine du projet ===
cd /d %~dp0\..
rem === Config de base ===
set DEVICE=GW2AR-LV18QN88C8/I7
set BOARD=tangnano20k
set TOP=top_uart_ultrason_command
set CST_FILE=%TOP%.cst
set JSON_FILE=runs/%TOP%.json
set PNR_JSON=runs/pnr_%TOP%.json
set BITSTREAM=runs/%TOP%.fs
rem === Créer le dossier runs si nécessaire ===
if not exist runs (
mkdir runs
)
echo === Étape 1 : Synthèse avec Yosys ===
yosys -p "read_verilog -sv src/verilog/%TOP%.v IP/verilog/ultrasonic_fpga.v IP/verilog/uart_tx_fifo.v IP/verilog/uart_rx_fifo.v IP/verilog/rxuartlite.v IP/verilog/fifo.v IP/verilog/uart_tx.v; synth_gowin -top %TOP% -json %JSON_FILE%"
if errorlevel 1 goto error
echo === Étape 2 : Placement & Routage avec nextpnr-himbaechel ===
nextpnr-himbaechel --json %JSON_FILE% --write %PNR_JSON% --device %DEVICE% --vopt cst=constraints/%CST_FILE% --vopt family=GW2A-18C
if errorlevel 1 goto error
echo === Étape 3 : Packing avec gowin_pack ===
gowin_pack -d %DEVICE% -o %BITSTREAM% %PNR_JSON%
if errorlevel 1 goto error
echo === Étape 4 : Flash avec openFPGALoader ===
openFPGALoader -b %BOARD% %BITSTREAM%
if errorlevel 1 goto error
echo === Compilation et flash réussis ===
goto end
:error
echo === Une erreur est survenue ===
:end
endlocal
pause

View File

@@ -0,0 +1,4 @@
@echo off
echo === Nettoyage du dossier runs ===
rd /s /q runs
mkdir runs

View File

@@ -0,0 +1,3 @@
@echo off
echo === Lancement de GTKWave ===
gtkwave runs/wave.vcd

View File

@@ -0,0 +1,29 @@
@echo off
echo === Simulation avec Icarus Verilog ===
setlocal enabledelayedexpansion
:: Dossier de sortie
set OUT=runs/sim.vvp
:: Top-level testbench module
set TOP=tb_dht11
:: Répertoires contenant des fichiers .v
set DIRS=src/verilog tests/verilog IP/verilog
:: Variable pour stocker les fichiers
set FILES=
:: Boucle sur chaque dossier
for %%D in (%DIRS%) do (
for %%F in (%%D\*.v) do (
set FILES=!FILES! %%F
)
)
:: Compilation avec Icarus Verilog
iverilog -g2012 -o %OUT% -s %TOP% %FILES%
endlocal
vvp runs/sim.vvp

View File

@@ -0,0 +1,211 @@
module dht11_interface #(
parameter CLK_FREQ = 27_000_000
)(
input wire i_clk,
inout wire io_dht11_sig,
input wire i_start,
output reg o_dht11_data_ready,
output reg o_busy,
output reg [7:0] o_temp_data,
output reg [7:0] o_hum_data,
output reg o_dht11_error
);
// === DHT11 INTERFACE ===
// === PARAMÈTRES ===
localparam T_18MS = CLK_FREQ * 18 / 1000; // cycles pour 18ms
localparam T_80US = CLK_FREQ * 81 / 1_000_000;
localparam T_79US = CLK_FREQ * 79 / 1_000_000;
localparam T_71US = CLK_FREQ * 71 / 1_000_000;
localparam T_51US = CLK_FREQ * 51 / 1_000_000;
localparam T_50US = CLK_FREQ * 50 / 1_000_000;
localparam T_49US = CLK_FREQ * 49 / 1_000_000;
localparam T_40US = CLK_FREQ * 40 / 1_000_000;
localparam T_28US = CLK_FREQ * 28 / 1_000_000;
localparam T_26US = CLK_FREQ * 26 / 1_000_000;
localparam T_20US = CLK_FREQ * 20 / 1_000_000;
// === Signal bidirectionnel ===
reg sig_dir;
reg sig_out;
wire sig_in;
assign io_dht11_sig = sig_dir ? sig_out : 1'bz; // Si sig_dir = 1, on force la valeur de sig_out sur la ligne, sinon on laisse la ligne libre (1'bz)
assign sig_in = io_dht11_sig;
// === REGISTRES ===
reg [3:0] state;
reg [31:0] timer;
reg [7:0] temp_data, hum_data;
reg [7:0] temp_dec, hum_dec, checksum;
reg [2:0] bit_count;
reg [5:0] bit_index;
reg [39:0] raw_data;
// === FSM ===
localparam IDLE = 4'd0, // Pull up la ligne
START = 4'd1, // Pull low 18ms
WAIT_RESPONSE = 4'd2, // Release la ligne (entre 20 et 40us)
RESPONSE_LOW = 4'd3, // DHT11 pull low 80us
RESPONSE_HIGH = 4'd4, // DHT11 pull high 80us
READ_BITS_LOW = 4'd5,
READ_BITS_HIGH = 4'd6,
DONE = 4'd7,
ERROR = 4'd8;
// === INITIALISATION ===
initial begin
sig_dir = 0;
sig_out = 1;
timer = 0;
state = IDLE;
bit_index = 0;
raw_data = 0;
o_dht11_data_ready = 0;
o_dht11_error = 0;
end
// === FSM principale ===
always @(posedge i_clk) begin
case (state)
IDLE: begin
sig_dir <= 1;
sig_out <= 1;
timer <= 0;
bit_index <= 0;
raw_data <= 0;
o_busy <= 0;
if (i_start) begin
sig_dir <= 1;
sig_out <= 0;
timer <= 0;
o_busy <= 1;
state <= START;
o_dht11_data_ready <= 0;
o_dht11_error <= 0;
end
end
START: begin
timer <= timer + 1;
if (timer >= T_18MS) begin
sig_dir <= 0; // libérer la ligne
timer <= 0;
state <= WAIT_RESPONSE;
end
end
WAIT_RESPONSE: begin
timer <= timer + 1;
if (sig_in == 0) begin
if (timer > T_20US && timer < T_40US) begin
timer <= 0;
state <= RESPONSE_LOW;
end else begin
state <= ERROR;
end
end else if (timer > T_40US) begin
state <= ERROR;
end
end
RESPONSE_LOW: begin
timer <= timer + 1;
if (sig_in == 1) begin
if (timer > T_79US && timer < T_80US) begin
timer <= 0;
state <= RESPONSE_HIGH;
end else begin
state <= ERROR;
end
end else if (timer > T_80US) begin
state <= ERROR;
end
end
RESPONSE_HIGH: begin
timer <= timer + 1;
if (sig_in == 0) begin
if (timer > T_79US && timer < T_80US) begin
timer <= 0;
state <= READ_BITS_LOW;
end else begin
state <= ERROR;
end
end else if (timer > T_80US) begin
state <= ERROR;
end
end
READ_BITS_LOW: begin
timer <= timer + 1;
if (sig_in == 1) begin
if (timer > T_49US && timer < T_51US) begin
timer <= 0;
state <= READ_BITS_HIGH;
end else begin
state <= ERROR;
end
end else if (timer > T_28US) begin
state <= ERROR;
end
end
READ_BITS_HIGH: begin // entre 26 et 28us = 0 et ~70us = 1
timer <= timer + 1;
if (sig_in == 0) begin
if (timer < T_26US) begin
state <= ERROR;
end
raw_data <= {raw_data[38:0], (timer > T_28US)}; // 1 si high > ~28us
timer <= 0;
bit_index <= bit_index + 1;
if (bit_index == 39) begin // Code a testé ici pour etre sur de capter le dernier bit
state <= DONE;
end else begin
state <= READ_BITS_LOW;
end
end else if (timer > T_71US) begin
state <= ERROR;
end
end
DONE: begin
hum_data <= raw_data[39:32];
hum_dec <= raw_data[31:24];
temp_data <= raw_data[23:16];
temp_dec <= raw_data[15:8];
checksum <= raw_data[7:0];
if (checksum == (raw_data[39:32] + raw_data[31:24] + raw_data[23:16] + raw_data[15:8])) begin
o_hum_data <= raw_data[39:32];
o_temp_data <= raw_data[23:16];
o_dht11_data_ready <= 1;
end else begin
o_dht11_error <= 1;
end
o_busy <= 0;
state <= IDLE;
end
ERROR: begin
o_dht11_error <= 1;
state <= IDLE;
end
endcase
end
endmodule

View File

@@ -0,0 +1,142 @@
module dht11_model (
inout wire data, // Ligne de données bidirectionnelle
input wire clk, // Horloge système (50 MHz)
input wire rst_n // Reset actif bas
);
// Paramètres pour les timings (basés sur une horloge de 50 MHz, période 20 ns)
localparam CLK_FREQ = 50_000_000; // 50 MHz
localparam START_LOW_TIME = 18_000 / 20; // 18 ms pour le signal de démarrage
localparam START_HIGH_TIME = 40_000 / 20; // 20-40 µs pour le relâchement
localparam RESPONSE_LOW = 80_000 / 20; // 80 µs pour la réponse basse
localparam RESPONSE_HIGH = 80_000 / 20; // 80 µs pour la réponse haute
localparam BIT0_LOW = 50_000 / 20; // 50 µs pour bit '0'
localparam BIT1_LOW = 70_000 / 20; // 70 µs pour bit '1'
localparam DATA_BITS = 40; // 40 bits de données
// États de la machine à états
localparam IDLE = 3'd0,
START = 3'd1,
RESPONSE = 3'd2,
SEND_DATA = 3'd3,
ENDED = 3'd4;
reg [2:0] state, next_state;
reg [15:0] counter; // Compteur pour les timings
reg [5:0] bit_index; // Index du bit à envoyer
reg data_out; // Valeur de sortie sur la ligne data
reg data_oe; // Contrôle de l'output enable (1 = sortie, 0 = haute impédance)
wire data_in; // Valeur lue sur la ligne data
// Données simulées (exemple : humidité = 45.0%, température = 23.0°C)
reg [7:0] humidity_int = 8'h2D; // 45 en décimal
reg [7:0] humidity_dec = 8'h00; // 0
reg [7:0] temp_int = 8'h17; // 23 en décimal
reg [7:0] temp_dec = 8'h00; // 0
reg [7:0] checksum; // Checksum = sum des 4 octets
reg [39:0] data_shift; // Registre pour les 40 bits de données
// Gestion de la ligne bidirectionnelle
assign data = data_oe ? data_out : 1'bz;
assign data_in = data;
// Calcul du checksum
always @(posedge clk or negedge rst_n) begin
if (!rst_n) begin
checksum <= 8'h00;
end else begin
checksum <= humidity_int + humidity_dec + temp_int + temp_dec;
end
end
// Concaténation des données à envoyer
always @(posedge clk or negedge rst_n) begin
if (!rst_n) begin
data_shift <= 40'b0;
end else begin
data_shift <= {humidity_int, humidity_dec, temp_int, temp_dec, checksum};
end
end
// Machine à états
always @(posedge clk or negedge rst_n) begin
if (!rst_n) begin
state <= IDLE;
counter <= 16'b0;
bit_index <= 6'b0;
data_out <= 1'b1;
data_oe <= 1'b0;
end else begin
state <= next_state;
case (state)
IDLE: begin
counter <= 16'b0;
bit_index <= 6'b0;
data_out <= 1'b1;
data_oe <= 1'b0;
end
START: begin
counter <= counter + 1;
data_out <= 1'b0;
data_oe <= 1'b1;
end
RESPONSE: begin
counter <= counter + 1;
if (counter < RESPONSE_LOW) begin
data_out <= 1'b0;
data_oe <= 1'b1;
end else begin
data_out <= 1'b1;
data_oe <= 1'b1;
end
end
SEND_DATA: begin
counter <= counter + 1;
if (counter == 0) begin
data_out <= 1'b0; // Début du bit (toujours bas)
data_oe <= 1'b1;
end else if (counter == (data_shift[39-bit_index] ? BIT1_LOW : BIT0_LOW)) begin
data_out <= 1'b1; // Fin du bit
data_oe <= 1'b1;
end else if (counter >= (data_shift[39-bit_index] ? BIT1_LOW + 50 : BIT0_LOW + 50)) begin
counter <= 16'b0;
bit_index <= bit_index + 1;
end
end
ENDED: begin
data_out <= 1'b1;
data_oe <= 1'b0;
counter <= 16'b0;
end
endcase
end
end
// Logique de transition des états
always @(*) begin
next_state = state;
case (state)
IDLE: begin
if (data_in == 1'b0) // Détection du signal de démarrage
next_state = START;
end
START: begin
if (counter >= START_LOW_TIME && data_in == 1'b1)
next_state = RESPONSE;
end
RESPONSE: begin
if (counter >= RESPONSE_LOW + RESPONSE_HIGH)
next_state = SEND_DATA;
end
SEND_DATA: begin
if (bit_index >= DATA_BITS)
next_state = ENDED;
end
ENDED: begin
next_state = IDLE;
end
endcase
end
endmodule

View File

@@ -0,0 +1,63 @@
`timescale 1ns/1ps
module tb_dht11;
reg clk = 0;
always #18.5 clk = ~clk; // Génère une clock 27 MHz
// === Registres ===
wire io_dht11_sig;
reg dht11_start;
wire dht11_data_ready;
wire dht11_busy;
wire [7:0] dht11_temp_data;
wire [7:0] dht11_hum_data;
wire dht11_error;
// === Simulation du module DHT11 ===
dht11_model dht11_model (
.data(io_dht11_sig),
.clk(clk),
.rst_n(1'b1) // Reset non utilisé dans ce test
);
// === Module DHT11 INTERFACE ===
dht11_interface dht11_interface (
.i_clk(clk),
.io_dht11_sig(io_dht11_sig),
.i_start(dht11_start),
.o_dht11_data_ready(dht11_data_ready),
.o_busy(dht11_busy),
.o_temp_data(dht11_temp_data),
.o_hum_data(dht11_hum_data),
.o_dht11_error(dht11_error)
);
// === TEST SEQUENCE ===
initial begin
$dumpfile("runs/sim.vcd");
$dumpvars(0, tb_dht11);
dht11_start = 0;
$display("==== Start DHT11 Test ====");
#100;
dht11_start = 1; // Démarre la lecture des données
$display("DHT11 start...");
wait(dht11_busy); // Attend que le module soit occupé
$display("DHT11 busy...");
dht11_start = 0;
wait(dht11_data_ready); // Attend que les données soient prêtes
$display("DHT11 data ready...");
$display("Température : %d.%d °C", dht11_temp_data);
$display("Humidité : %d.%d %%", dht11_hum_data);
$display("==== End DHT11 Test ====");
$finish;
end
endmodule