1
0
forked from tanchou/Verilog

Loopback fifo fonctionne mais avec 3 valeur de décalage

This commit is contained in:
Gamenight77
2025-05-09 11:39:40 +02:00
parent 134df27937
commit e086ba8ef0
25 changed files with 1578 additions and 92 deletions

View File

@@ -0,0 +1,43 @@
module fifo #(
parameter DEPTH = 16,
parameter WIDTH = 8
)(
input wire clk,
input wire wr_en,
input wire[WIDTH-1:0] wr_data,
input wire rd_en,
output wire[WIDTH-1:0] rd_data,
output wire full,
output wire empty
);
reg [WIDTH-1:0] fifo[0:DEPTH-1];
reg [3:0] wr_ptr;
reg [3:0] rd_ptr;
reg [3:0] count;
assign full = (count == DEPTH);
assign empty = (count == 0);
assign rd_data = fifo[rd_ptr];
initial begin
wr_ptr = 0;
rd_ptr = 0;
count = 0;
end
always @(posedge clk) begin
if (wr_en && !full) begin
fifo[wr_ptr] <= wr_data;
wr_ptr <= (wr_ptr + 1) % DEPTH;
count <= count + 1;
end
if (rd_en && !empty) begin
rd_ptr <= (rd_ptr + 1) % DEPTH;
count <= count - 1;
end
end
endmodule

View File

@@ -0,0 +1,131 @@
module uart_tx #(
parameter CLK_FREQ = 27_000_000,
parameter BAUD_RATE = 115200
)(
input wire clk,
input wire rst_p,
input wire[7:0] data,
input wire tx_enable,
output reg tx_ready,
output wire tx
);
localparam CYCLE = CLK_FREQ / BAUD_RATE;
localparam IDLE = 2'd0;
localparam START = 2'd1;
localparam DATA = 2'd2;
localparam STOP = 2'd3;
reg [1:0] state = IDLE;
reg [1:0] next_state;
reg [15:0] cycle_cnt; //baud counter
reg tx_reg;
reg [2:0] bit_cnt;
reg [7:0] tx_data_latch = 0;
assign tx = tx_reg;
always@(posedge clk or posedge rst_p)begin // Avance d'etat
if(rst_p == 1'b1)
state <= IDLE;
else
state <= next_state;
end
always@(*) begin
case(state)
IDLE:
if(tx_enable == 1'b1)
next_state = START;
else
next_state = IDLE;
START:
if(cycle_cnt == CYCLE - 1)
next_state = DATA;
else
next_state = START;
DATA:
if(cycle_cnt == CYCLE - 1 && bit_cnt == 3'd7)
next_state = STOP;
else
next_state = DATA;
STOP:
if(cycle_cnt == CYCLE - 1)
next_state = IDLE;
else
next_state = STOP;
default:
next_state = IDLE;
endcase
end
always@(posedge clk or posedge rst_p)begin // tx_ready block
if(rst_p == 1'b1)
tx_ready <= 1'b0; // Reset
else if(state == IDLE && tx_enable == 1'b1)
tx_ready <= 1'b0; // Pas prêt tant que les données sont valides
else if(state == IDLE)
tx_ready <= 1'b1;
else if(state == STOP && cycle_cnt == CYCLE - 1)
tx_ready <= 1'b1; // Prêt une fois le bit STOP envoyé
else
tx_ready <= tx_ready; // Reste inchangé dans d'autres cas
end
always@(posedge clk or posedge rst_p) begin // tx_data_latch block
if(rst_p == 1'b1) begin
tx_data_latch <= 8'd0;
end else if(state == IDLE && tx_enable == 1'b1) begin
tx_data_latch <= data; // Charger les données de data dans tx_data_latch
end
end
always@(posedge clk or posedge rst_p)begin // DATA bit_cnt block
if(rst_p == 1'b1)begin
bit_cnt <= 3'd0;
end else if(state == DATA)
if(cycle_cnt == CYCLE - 1)
bit_cnt <= bit_cnt + 3'd1;
else
bit_cnt <= bit_cnt;
else
bit_cnt <= 3'd0;
end
always@(posedge clk or posedge rst_p)begin // Cycle counter
if(rst_p == 1'b1)
cycle_cnt <= 16'd0;
else if((state == DATA && cycle_cnt == CYCLE - 1) || next_state != state)
cycle_cnt <= 16'd0;
else
cycle_cnt <= cycle_cnt + 16'd1;
end
always@(posedge clk or posedge rst_p)begin // tx state managment
if(rst_p == 1'b1)
tx_reg <= 1'b1;
else
case(state)
IDLE,STOP:
tx_reg <= 1'b1;
START:
tx_reg <= 1'b0;
DATA:
tx_reg <= tx_data_latch[bit_cnt]; // SENDING BYTE HERE
default:
tx_reg <= 1'b1;
endcase
end
endmodule

View File

@@ -0,0 +1,86 @@
module uart_tx_fifo #(
parameter CLK_FREQ = 27_000_000,
parameter BAUD_RATE = 115200,
parameter FIFO_DEPTH = 8
)(
input clk,
input wr_en,
input [7:0] wr_data,
output tx_pin,
output fifo_full
);
// FIFO wires
wire [7:0] fifo_rd_data;
wire fifo_empty;
reg fifo_rd_en;
// UART wires
wire tx_ready;
reg uart_tx_enable;
reg [7:0] uart_tx_data;
// FSM
typedef enum logic [1:0] {
IDLE,
WAIT_READY,
SEND
} state_t;
state_t state = IDLE;
// FIFO instantiation
fifo #(
.WIDTH(8),
.DEPTH(FIFO_DEPTH)
) fifo_inst (
.clk(clk),
.wr_en(wr_en),
.wr_data(wr_data),
.rd_en(fifo_rd_en),
.rd_data(fifo_rd_data),
.empty(fifo_empty),
.full(fifo_full)
);
// UART TX instantiation
uart_tx #(
.CLK_FREQ(CLK_FREQ),
.BAUD_RATE(BAUD_RATE)
) uart_tx_inst (
.clk(clk),
.rst_p(1'b0),
.data(uart_tx_data),
.tx_enable(uart_tx_enable),
.tx_ready(tx_ready),
.tx(tx_pin)
);
always_ff @(posedge clk) begin
// Valeurs par défaut
fifo_rd_en <= 0;
uart_tx_enable <= 0;
case (state)
IDLE: begin
if (!fifo_empty) begin
state <= WAIT_READY;
end
end
WAIT_READY: begin
if (tx_ready) begin
fifo_rd_en <= 1;
state <= SEND;
end
end
SEND: begin
uart_tx_data <= fifo_rd_data;
uart_tx_enable <= 1;
state <= IDLE;
end
endcase
end
endmodule

View File

@@ -0,0 +1,151 @@
module ultrasonic_fpga #(
parameter integer CLK_FREQ = 27_000_000 // Fréquence d'horloge en Hz
)(
input wire clk,
input wire start,
inout wire sig, // Broche bidirectionnelle vers le capteur
output reg [15:0] distance, // Distance mesurée en cm
output reg busy,
output reg done
);
reg [15:0] trig_counter = 0;
reg [31:0] echo_counter = 0;
reg [31:0] echo_div_counter = 0;
reg [15:0] distance_counter = 0;
reg sig_out;
reg sig_dir; // 1: output, 0: input
assign sig = sig_dir ? sig_out : 1'bz; // bz pour dire que le fpga laisse le fils libre et n'oblige pas de valeur
reg sig_int, sig_ok;
reg [2:0] state = IDLE;
localparam IDLE = 3'd0,
TRIG_HIGH = 3'd1,
TRIG_LOW = 3'd2,
WAIT_ECHO = 3'd3,
MEASURE_ECHO = 3'd4,
COMPUTE = 3'd5,
DONE = 3'd6,
WAIT_NEXT = 3'd7;
localparam integer TRIG_PULSE_CYCLES = CLK_FREQ / 100_000; // 10us pulse
localparam integer DIST_DIVISOR = (58 * CLK_FREQ) / 1_000_000; // pour conversion us -> cm
localparam integer MAX_CM = 350;
localparam integer TIMEOUT_CYCLES = (MAX_CM * 58 * CLK_FREQ) / 1000000;
localparam WAIT_NEXT_CYCLES = (CLK_FREQ / 1000) * 100; // 60 ms
reg [31:0] wait_counter;
always @(posedge clk) begin
sig_int <= sig;
sig_ok <= sig_int;
end
always @(posedge clk) begin
busy <= (state != IDLE);
end
always @(posedge clk) begin // FSM
case (state)
IDLE: begin
done <= 1;
sig_out <= 0;
sig_dir <= 0;
distance <= 0;
if (start) begin
state <= TRIG_HIGH;
trig_counter <= 0;
done <= 0;
end
end
TRIG_HIGH: begin
sig_out <= 1;
sig_dir <= 1;
if (trig_counter < TRIG_PULSE_CYCLES) begin
trig_counter <= trig_counter + 1;
end else begin
trig_counter <= 0;
state <= TRIG_LOW;
end
end
TRIG_LOW: begin
sig_out <= 0;
sig_dir <= 0; // Mettre en entrée
if (sig_ok) begin
state <= TRIG_LOW;
end else
state <= WAIT_ECHO;
end
WAIT_ECHO: begin
if (sig_ok) begin
echo_counter <= 0;
state <= MEASURE_ECHO;
end else if (echo_counter >= TIMEOUT_CYCLES) begin
distance <= 0;
state <= DONE;
end else begin
echo_counter <= echo_counter + 1;
end
end
MEASURE_ECHO: begin
if (sig_ok) begin
if (echo_counter < TIMEOUT_CYCLES) begin
echo_counter <= echo_counter + 1;
end else begin
state <= DONE;
end
end else begin
state <= COMPUTE;
end
end
COMPUTE: begin
if (echo_counter >= DIST_DIVISOR) begin
echo_counter <= echo_counter - DIST_DIVISOR;
distance_counter <= distance_counter + 1;
state <= COMPUTE;
end else begin
distance <= distance_counter;
state <= DONE;
end
end
DONE: begin
if (start) begin
wait_counter <= 0;
state <= WAIT_NEXT;
end else begin
state <= IDLE;
end
done <= 1;
end
WAIT_NEXT: begin
wait_counter <= wait_counter + 1;
if (wait_counter >= WAIT_NEXT_CYCLES) begin
state <= TRIG_HIGH;
trig_counter <= 0;
distance_counter <= 0;
echo_counter <= 0;
end
end
default: begin
state <= IDLE; // Reset to IDLE state in case of an error
end
endcase
end
endmodule