cleanup
This commit is contained in:
@@ -51,11 +51,8 @@ class network:
|
||||
self.activations.append(_input)
|
||||
|
||||
#activation function application
|
||||
#for i in range(len(_input)):
|
||||
# _input[i] = network.__sigmoid(_input)
|
||||
_input = network.__sigmoid(_input)
|
||||
|
||||
#On peut comparer la performance si on recalcul plus tard
|
||||
if (__storeValues):
|
||||
self.outputs.append(_input)
|
||||
|
||||
@@ -110,18 +107,14 @@ class network:
|
||||
errorSumsBiases = [np.zeros(layer.shape) for layer in self.biases]
|
||||
self.__errors = [np.zeros(len(layer)) for layer in self.weights]
|
||||
|
||||
#rempli self.activations et self.outputs
|
||||
#Rempli self.activations et self.outputs
|
||||
self.process(_input, True)
|
||||
|
||||
self.__desiredOutput = desiredOutput
|
||||
|
||||
#A optimiser
|
||||
for layerNumber in range(len(errorSumsWeights)-1, -1, -1):
|
||||
for neuronNumber in range(len(errorSumsWeights[layerNumber])):
|
||||
errorSumsBiases[layerNumber][neuronNumber] += self.__Error(layerNumber, neuronNumber)
|
||||
#for weightNumber in range(len(errorSumsWeights[layerNumber][neuronNumber])):
|
||||
#print("layer : " + str(layerNumber) + " neuron : " + str(neuronNumber) + " weight : " + str(weightNumber))
|
||||
#errorSumsWeights[layerNumber][neuronNumber][weightNumber] += self.__PartialDerivative(layerNumber, neuronNumber, weightNumber)
|
||||
#errorSumsWeights[layerNumber][neuronNumber][weightNumber] = errorSumsBiases[layerNumber][neuronNumber] * self.outputs[layerNumber][weightNumber]
|
||||
errorSumsWeights[layerNumber][neuronNumber] = np.dot(errorSumsBiases[layerNumber][neuronNumber],self.outputs[layerNumber])
|
||||
|
||||
total = 0
|
||||
@@ -133,27 +126,6 @@ class network:
|
||||
errorSumsBiases[layerNumber] = np.multiply(errorSumsBiases[layerNumber], -(learningRate/len(inputBatch)))
|
||||
self.biases[layerNumber] = np.add(self.biases[layerNumber], errorSumsBiases[layerNumber])
|
||||
|
||||
#print(self.__biases)
|
||||
"""
|
||||
|
||||
for layerNumber in range(len(errorSumsWeights)):
|
||||
for neuronNumber in range(len(errorSumsWeights[layerNumber])):
|
||||
|
||||
errorSumsBiases[layerNumber][neuronNumber] = errorSumsBiases[layerNumber][neuronNumber] / len(inputBatch)
|
||||
total += errorSumsBiases[layerNumber][neuronNumber]
|
||||
self.biases[layerNumber][neuronNumber] -= learningRate * errorSumsBiases[layerNumber][neuronNumber]
|
||||
|
||||
for weightNumber in range(len(errorSumsWeights[layerNumber][neuronNumber])):
|
||||
|
||||
#Probablement faisable avec une multiplication de matrices
|
||||
errorSumsWeights[layerNumber][neuronNumber][weightNumber] = errorSumsWeights[layerNumber][neuronNumber][weightNumber] / len(inputBatch)
|
||||
|
||||
#total += errorSumsWeights[layerNumber][neuronNumber][weightNumber]
|
||||
|
||||
#Probablement faisable avec une somme de matrices
|
||||
self.weights[layerNumber][neuronNumber][weightNumber] -= learningRate * errorSumsWeights[layerNumber][neuronNumber][weightNumber]
|
||||
|
||||
#print("Error : " + str(total))"""
|
||||
if (visualize):
|
||||
ani = animation.ArtistAnimation(fig, vizualisationData, interval=100)
|
||||
plt.show()
|
||||
@@ -172,9 +144,6 @@ class network:
|
||||
upperLayerLinksSum += self.weights[layer+1][upperLayerNeuron][neuron] * self.__errors[layer+1][upperLayerNeuron]
|
||||
return network.__sigmoid(self.activations[layer][neuron], derivative=True) * upperLayerLinksSum
|
||||
|
||||
#def __PartialDerivative(self, layer, neuron, weight):
|
||||
# return self.__Error(layer, neuron) * self.outputs[layer][weight]
|
||||
|
||||
def accuracy(self, inputs, desiredOutputs):
|
||||
if (type(inputs) != list or type(desiredOutputs) != list):
|
||||
raise TypeError("The inputs and desired outputs must be lists of numpy arrays !")
|
||||
|
Reference in New Issue
Block a user