cleanup
This commit is contained in:
BIN
tests/MNIST30epoch
Normal file
BIN
tests/MNIST30epoch
Normal file
Binary file not shown.
45
tests/MNISTDrawingPrediction.py
Normal file
45
tests/MNISTDrawingPrediction.py
Normal file
@@ -0,0 +1,45 @@
|
||||
import tkinter
|
||||
from PIL import Image, ImageDraw
|
||||
import numpy as np
|
||||
from sys import path
|
||||
path.insert(1, "..")
|
||||
from sobek.network import network
|
||||
|
||||
|
||||
|
||||
class Sketchpad(tkinter.Canvas):
|
||||
def __init__(self, parent, predictionLabel, **kwargs, ):
|
||||
super().__init__(parent, **kwargs)
|
||||
self.bind("<Button-3>", self.test)
|
||||
self.bind("<B1-Motion>", self.add_line)
|
||||
self.PILImage = Image.new("F", (560, 560), 100)
|
||||
self.draw = ImageDraw.Draw(self.PILImage)
|
||||
self.MNISTNN = network.networkFromFile("MNIST30epoch")
|
||||
self.predictionLabel = predictionLabel
|
||||
|
||||
def add_line(self, event):
|
||||
self.create_oval((event.x+32, event.y+32, event.x-32, event.y-32), fill="black")
|
||||
self.draw.ellipse([event.x-32, event.y-32, event.x+32, event.y+32], fill="black")
|
||||
smallerImage = self.PILImage.reduce(20)
|
||||
imageAsArray = np.array(smallerImage.getdata())
|
||||
imageAsArray = (100 - imageAsArray)/100
|
||||
self.predictionLabel['text'] = ( "Predicted number : " + str(np.argmax(self.MNISTNN.process(imageAsArray))))
|
||||
|
||||
def test(self, event):
|
||||
self.PILImage = Image.new("F", (560, 560), 100)
|
||||
self.draw = ImageDraw.Draw(self.PILImage)
|
||||
self.delete("all")
|
||||
|
||||
window = tkinter.Tk()
|
||||
window.title("Number guesser")
|
||||
window.resizable(False, False)
|
||||
window.columnconfigure(0, weight=1)
|
||||
window.rowconfigure(0, weight=1)
|
||||
|
||||
predictionLabel = tkinter.Label(window, text="Predicted number :")
|
||||
|
||||
sketch = Sketchpad(window, predictionLabel, width=560, height=560)
|
||||
sketch.grid(column=0, row=0, sticky=(tkinter.N, tkinter.W, tkinter.E, tkinter.S))
|
||||
predictionLabel.grid(column=0, row=1)
|
||||
|
||||
window.mainloop()
|
60
tests/MNISTLearning.py
Normal file
60
tests/MNISTLearning.py
Normal file
@@ -0,0 +1,60 @@
|
||||
import numpy as np
|
||||
import gzip
|
||||
import time
|
||||
from sys import path
|
||||
path.insert(1, "..")
|
||||
from sobek.network import network
|
||||
|
||||
|
||||
print("--- Data loading ---")
|
||||
|
||||
def getData(fileName):
|
||||
with open(fileName, 'rb') as f:
|
||||
data = f.read()
|
||||
return np.frombuffer(gzip.decompress(data), dtype=np.uint8).copy()
|
||||
|
||||
|
||||
tempTrainImages = getData("./MNIST/train-images-idx3-ubyte.gz")[0x10:].reshape((-1, 784)).tolist()
|
||||
trainImages = []
|
||||
for image in tempTrainImages:
|
||||
for pixel in range(784):
|
||||
if image[pixel] !=0:
|
||||
image[pixel] = image[pixel]/256
|
||||
trainImages.append(np.array(image, dtype=np.float64))
|
||||
tempTrainLabels = getData("./MNIST/train-labels-idx1-ubyte.gz")[8:]
|
||||
trainLabels = []
|
||||
for label in tempTrainLabels:
|
||||
trainLabels.append(np.zeros(10))
|
||||
trainLabels[-1][label] = 1.0
|
||||
|
||||
myNetwork = network(784, 30, 10)
|
||||
|
||||
learningRate = 3.0
|
||||
|
||||
print("--- Learning ---")
|
||||
|
||||
startTime = time.perf_counter()
|
||||
|
||||
"""
|
||||
for i in range(1):
|
||||
print("Epoch: " + str(i))
|
||||
batchEnd = 10
|
||||
while batchEnd < 1000:
|
||||
batchImages = trainImages[:batchEnd]
|
||||
batchLabels = trainLabels[:batchEnd]
|
||||
myNetwork.train(batchImages, batchLabels, learningRate)
|
||||
batchEnd += 10
|
||||
if (batchEnd%100) == 0:
|
||||
print(batchEnd)
|
||||
"""
|
||||
|
||||
myNetwork.train(trainImages, trainLabels, learningRate, 10, 30)
|
||||
|
||||
endTime = time.perf_counter()
|
||||
|
||||
print("Learning time : " + str(endTime - startTime))
|
||||
|
||||
print(trainLabels[121])
|
||||
print(myNetwork.process(trainImages[121]))
|
||||
|
||||
myNetwork.saveToFile("MNIST30epoch")
|
32
tests/MNISTLoadTest.py
Normal file
32
tests/MNISTLoadTest.py
Normal file
@@ -0,0 +1,32 @@
|
||||
import numpy as np
|
||||
import gzip
|
||||
from sys import path
|
||||
path.insert(1, "..")
|
||||
from sobek.network import network
|
||||
|
||||
print("--- Data loading ---")
|
||||
|
||||
def getData(fileName):
|
||||
with open(fileName, 'rb') as f:
|
||||
data = f.read()
|
||||
return np.frombuffer(gzip.decompress(data), dtype=np.uint8).copy()
|
||||
|
||||
|
||||
tempTrainImages = getData("./MNIST/t10k-images-idx3-ubyte.gz")[0x10:].reshape((-1, 784)).tolist()
|
||||
trainImages = []
|
||||
for image in tempTrainImages:
|
||||
for pixel in range(784):
|
||||
if image[pixel] !=0:
|
||||
image[pixel] = image[pixel]/256
|
||||
trainImages.append(np.array(image, dtype=np.float64))
|
||||
tempTrainLabels = getData("./MNIST/t10k-labels-idx1-ubyte.gz")[8:]
|
||||
trainLabels = []
|
||||
for label in tempTrainLabels:
|
||||
trainLabels.append(np.zeros(10))
|
||||
trainLabels[-1][label] = 1.0
|
||||
|
||||
print("--- Testing ---")
|
||||
|
||||
myNetwork = network.networkFromFile("MNIST30epoch")
|
||||
|
||||
print(myNetwork.accuracy(trainImages, trainLabels))
|
50
tests/testLearning.py
Normal file
50
tests/testLearning.py
Normal file
@@ -0,0 +1,50 @@
|
||||
import numpy as np
|
||||
import random
|
||||
from sys import path
|
||||
path.insert(1, "..")
|
||||
from sobek.network import network
|
||||
|
||||
random.seed()
|
||||
|
||||
myNetwork = network(10, 10)
|
||||
|
||||
learningRate = 3
|
||||
|
||||
for j in range(1000):
|
||||
rand = []
|
||||
inputs = []
|
||||
desiredOutputs = []
|
||||
|
||||
if (j%50 == 0):
|
||||
print(j)
|
||||
|
||||
for i in range(10):
|
||||
rand.append( random.randrange(10)/10)
|
||||
|
||||
for i in range(10):
|
||||
desiredOutputs.append(np.zeros(10))
|
||||
desiredOutputs[i][9 - int(rand[i]*10)] = 1.0
|
||||
|
||||
for i in range(10):
|
||||
inputs.append(np.zeros(10))
|
||||
inputs[i][int(rand[i]*10)] = 1.0
|
||||
|
||||
myNetwork.train(inputs, desiredOutputs, learningRate)
|
||||
|
||||
test = []
|
||||
test.append(np.zeros(10))
|
||||
test.append(np.zeros(10))
|
||||
test[0][1] = 1.0
|
||||
test[1][5] = 1.0
|
||||
print(test[0])
|
||||
print(myNetwork.process(test[0]))
|
||||
print(test[1])
|
||||
print(myNetwork.process(test[1]))
|
||||
|
||||
print("Save and load test :")
|
||||
|
||||
myNetwork.saveToFile("test")
|
||||
|
||||
myNetwork2 = network.networkFromFile("test")
|
||||
|
||||
print(myNetwork.process(test[0]).all() == myNetwork2.process(test[0]).all())
|
68
tests/testLearningNAND.py
Normal file
68
tests/testLearningNAND.py
Normal file
@@ -0,0 +1,68 @@
|
||||
import numpy as np
|
||||
import random
|
||||
import time
|
||||
from sys import path
|
||||
path.insert(1, "..")
|
||||
from sobek.network import network
|
||||
|
||||
random.seed()
|
||||
|
||||
myNetwork = network(2, 2, 1)
|
||||
|
||||
learningRate = 3
|
||||
|
||||
test = []
|
||||
result = []
|
||||
test.append(np.zeros(2))
|
||||
test.append(np.zeros(2))
|
||||
test.append(np.zeros(2))
|
||||
test.append(np.zeros(2))
|
||||
test[1][1] = 1.0
|
||||
test[2][0] = 1.0
|
||||
test[3][0] = 1.0
|
||||
test[3][1] = 1.0
|
||||
result.append(np.ones(1))
|
||||
result.append(np.ones(1))
|
||||
result.append(np.ones(1))
|
||||
result.append(np.zeros(1))
|
||||
|
||||
learningTime = 0
|
||||
|
||||
nbRep = 1
|
||||
|
||||
for i in range(nbRep):
|
||||
if (i%(nbRep/10) == 0): print(i)
|
||||
|
||||
startTime = time.perf_counter()
|
||||
|
||||
myNetwork.train(test, result, learningRate, len(test), 10000, visualize=False)
|
||||
|
||||
endTime = time.perf_counter()
|
||||
learningTime += endTime - startTime
|
||||
learningTime = learningTime / nbRep
|
||||
|
||||
test = []
|
||||
result = []
|
||||
test.append(np.zeros(2))
|
||||
test.append(np.zeros(2))
|
||||
test.append(np.zeros(2))
|
||||
test.append(np.zeros(2))
|
||||
test[1][1] = 1.0
|
||||
test[2][0] = 1.0
|
||||
test[3][0] = 1.0
|
||||
test[3][1] = 1.0
|
||||
result.append(np.ones(1))
|
||||
result.append(np.ones(1))
|
||||
result.append(np.ones(1))
|
||||
result.append(np.zeros(1))
|
||||
|
||||
#print(myNetwork.weights)
|
||||
#print(myNetwork.biases)
|
||||
print("0 0 : " + str(myNetwork.process(test[0])) + " == 1 ?")
|
||||
print("0 1 : " + str(myNetwork.process(test[1])) + " == 1 ?")
|
||||
print("1 0 : " + str(myNetwork.process(test[2])) + " == 1 ?")
|
||||
print("1 1 : " + str(myNetwork.process(test[3])) + " == 0 ?")
|
||||
|
||||
myNetwork.saveToFile("NAND")
|
||||
|
||||
print("Learning time : " + str(endTime - startTime))
|
26
tests/testNAND.py
Normal file
26
tests/testNAND.py
Normal file
@@ -0,0 +1,26 @@
|
||||
import numpy as np
|
||||
from sys import path
|
||||
path.insert(1, "..")
|
||||
from sobek.network import network
|
||||
|
||||
myNetwork = network(2, 1)
|
||||
|
||||
test = []
|
||||
test.append(np.zeros(2))
|
||||
test.append(np.zeros(2))
|
||||
test.append(np.zeros(2))
|
||||
test.append(np.zeros(2))
|
||||
test[1][1] = 1.0
|
||||
test[2][0] = 1.0
|
||||
test[3][0] = 1.0
|
||||
test[3][1] = 1.0
|
||||
|
||||
myNetwork.weights = [np.array([[-10.0, -10.0]])]
|
||||
myNetwork.biases = [np.array([15.0])]
|
||||
print(myNetwork.weights)
|
||||
print(myNetwork.biases)
|
||||
|
||||
print("0 0 : " + str(myNetwork.process(test[0])) + " == 1 ?")
|
||||
print("0 1 : " + str(myNetwork.process(test[1])) + " == 1 ?")
|
||||
print("1 0 : " + str(myNetwork.process(test[2])) + " == 1 ?")
|
||||
print("1 1 : " + str(myNetwork.process(test[3])) + " == 0 ?")
|
12
tests/timeTest.py
Normal file
12
tests/timeTest.py
Normal file
@@ -0,0 +1,12 @@
|
||||
import random
|
||||
import numpy as np
|
||||
|
||||
inputs = []
|
||||
|
||||
for i in range(10000000):
|
||||
inputs.append([random.randrange(10)])
|
||||
inputs = np.array(inputs, dtype=object)
|
||||
|
||||
inputs = np.insert(inputs, 0, 1, axis=1)
|
||||
|
||||
print(inputs)
|
40
tests/timeTest2.py
Normal file
40
tests/timeTest2.py
Normal file
@@ -0,0 +1,40 @@
|
||||
import random
|
||||
import numpy as np
|
||||
import time
|
||||
|
||||
weights = np.random.default_rng(42).random((10, 10))
|
||||
biases = np.random.default_rng(42).random(10)
|
||||
biases = np.array(biases, dtype=object)
|
||||
|
||||
time1 = time.perf_counter()
|
||||
|
||||
for k in range(1000):
|
||||
_input = []
|
||||
for i in range(10):
|
||||
_input.append(random.randrange(10))
|
||||
_input = np.array(_input, dtype=object)
|
||||
|
||||
for f in range(100):
|
||||
_input = np.matmul(_input, weights)
|
||||
_input = np.add(_input, biases)
|
||||
|
||||
time2 = time.perf_counter()
|
||||
|
||||
weights = np.random.default_rng(42).random((11, 10))
|
||||
|
||||
time3 = time.perf_counter()
|
||||
|
||||
for k in range(1000):
|
||||
_input = []
|
||||
for i in range(10):
|
||||
_input.append(random.randrange(10))
|
||||
_input = np.array(_input, dtype=object)
|
||||
|
||||
for f in range(100):
|
||||
_input = np.insert(_input, 0, 1, axis=0)
|
||||
_input = np.matmul(_input, weights)
|
||||
|
||||
time4 = time.perf_counter()
|
||||
|
||||
print("Multiplication et addition : " + str(time2-time1) + " secondes")
|
||||
print("Insertion puis multiplication : " + str(time4-time3) + " secondes")
|
Reference in New Issue
Block a user