publicMasters/1-ComputationAndData/6ComputationAndData.md

70 lines
2.6 KiB
Markdown

# Quelques constructions autour des automates.
Nous avons vu le modèle des automates finis.
Nous explorons ici trois techniques.
## Complétez l'automate.
Un automate est incomplet si il peut arriver qu'au cours d'un calcul on ne sache pas quoi faire.
Ceci correspond dans la table de transition à une case sans prochain état pour une lettre donnée.
Pour le compléter, on ajoute un état poubelle à notre automate.
Cet état est un puits dans lequel on reste coincé (toutes transitions sortante reste dans cet été poubelle); et, toute transition manquante devient une transition vers cet état poubelle.
## Déterminisation
* Exemple d-un automate non déterministe à 3 état qui calcule les mots qui commencent et terminent par a et ont au moins deux lettres.
* Calcul sous forme d'un arbre pour aaa, et aaab
* Table de transition
* digression parralèlisme (multi coeurs)
* digression préemption plusieurs processus (commande top)
* digression problème mémoire partagée etc
* retour exemple automate. Super-état. Déterminisation.
### Méthode.
* On part de l'état initial, on note les états accessibles depuis cet état.
* Si un état n'existe pas, on ajoute le super état correspondant.
* Un super-état est acceptant ssi il contient un état acceptant.
* On arrête la construction quand on ne recontre pas de nouvel état.
### Exercice.
On déterminise l'automate non déterministe à 5 états qui acceptent les mots (y compris d'une lettre) qui commencent et terminent par la même lettre.
Donnée du problème : Dessin au tableau
1. Donnez table de transition
2. Pourquoi l'automate n'est pas déterministe
3. Déterminisez l'automate avec la méthode vue en cours.
Correction.
1. la table de transition
| | a | b | c |
|:---------------|:-----|:-----|:-----|
| 0 (initial) | 1,OK | 2,OK | 3,OK |
| 1 | 1,OK | 1 | 1 |
| 2 | 2 | 2,OK | 2 |
| 3 | 3 | 3 | 3,OK |
| OK (acceptant) | | | |
2. Non déterminisme visible quand une cas contient au moins 2 états successeurs.
Par exemple depuis 0 en lisant a je peux aller vers l'état 1 et l'état OK.
3. Déterminisation
| | a | b | c |
|:------------------|:-----|:-----|:-----|
| 0 (initial) | 1,OK | 2,OK | 3,OK |
| 1, OK (acceptant) | 1,OK | 1 | 1 |
| 2, OK (acceptant) | 2 | 2,OK | 2 |
| 3, OK (acceptant) | 3 | 3 | 3,OK |
| 1 | 1,OK | 1 | 1 |
| 2 | 2 | 2,OK | 2 |
| 3 | 3 | 3 | 3,OK |
## Équivalence.