1
0
forked from tanchou/Verilog

Add UART communication modules and testbenches

- Implemented rx_fifo module for receiving data with FIFO management.
- Created tb_top_uart_rx_tx testbench for testing UART transmission and reception.
- Developed tb_uart_rx testbench for validating UART receiver functionality.
- Added tb_uart_tx testbench for testing UART transmitter behavior.
- Designed top_led_uart module to interface UART with LED outputs.
- Integrated top_uart_ultrasonic module for ultrasonic sensor data transmission via UART.
- Implemented tx_fifo module for transmitting data with FIFO management.
- Developed uart_rx module for receiving serial data with state machine control.
- Created uart_top module to connect RX and TX functionalities with FIFO buffers.
- Implemented uart_tx module for transmitting serial data with state machine control.
This commit is contained in:
Gamenight77
2025-04-28 17:13:39 +02:00
parent 596d47d356
commit 96c234de6d
11 changed files with 846 additions and 0 deletions

BIN
Semaine_3/UARTV2/memo.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 62 KiB

View File

@@ -0,0 +1,49 @@
module rx_fifo #(
parameter WIDTH = 8, // Taille des données (8 bits)
parameter DEPTH = 16 // Taille de la FIFO
)(
input clk,
input rst_p,
input [WIDTH-1:0] rx_data_in,
input rx_data_valid, // Indique que les données reçues sont valides
output reg [WIDTH-1:0] rx_data_out,
output reg rx_data_ready, // Indique que les données peuvent être lues
output reg fifo_empty, // FIFO vide
output reg fifo_full // FIFO pleine
);
reg [WIDTH-1:0] fifo_mem [DEPTH-1:0]; // Mémoire FIFO
reg [4:0] wr_ptr = 0; // Pointeur d'écriture
reg [4:0] rd_ptr = 0; // Pointeur de lecture
reg [4:0] fifo_count = 0; // Compteur d'éléments dans la FIFO
always @(posedge clk or posedge rst_p) begin
if (rst_p) begin
wr_ptr <= 0;
rd_ptr <= 0;
fifo_count <= 0;
rx_data_ready <= 0;
fifo_empty <= 1;
fifo_full <= 0;
end else begin
// Écriture dans la FIFO
if (rx_data_valid && !fifo_full) begin
fifo_mem[wr_ptr] <= rx_data_in;
wr_ptr <= wr_ptr + 1;
fifo_count <= fifo_count + 1;
end
// Lecture de la FIFO
if (!fifo_empty) begin
rx_data_out <= fifo_mem[rd_ptr];
rd_ptr <= rd_ptr + 1;
fifo_count <= fifo_count - 1;
end
// Mise à jour des indicateurs de vide et de plein
fifo_empty <= (fifo_count == 0);
fifo_full <= (fifo_count == DEPTH);
rx_data_ready <= !fifo_empty;
end
end
endmodule

View File

@@ -0,0 +1,69 @@
`timescale 1ns / 1ps
module tb_top_uart_rx_tx;
parameter CLK_FREQ = 27_000_000;
parameter BAUD_RATE = 115200;
// Signaux
reg clk = 0;
reg start = 0;
reg [7:0] data_in = 0;
wire [7:0] data_out;
wire valid;
wire tx;
wire rx; // On connecte tx directement à rx pour le test
// Instance du module à tester
top_uart_rx_tx #(
.CLK_FREQ(CLK_FREQ),
.BAUD_RATE(BAUD_RATE)
) uut (
.clk(clk),
.start(start),
.data_in(data_in),
.rx(rx),
.data_out(data_out),
.valid(valid),
.tx(tx)
);
// Boucle le tx sur rx
assign rx = tx;
// Clock à 50 MHz (20 ns période)
always #10 clk = ~clk;
// Simulation principale
initial begin
$display("Début de la simulation");
$dumpfile("uart_loopback.vcd"); // Pour GTKWave
$dumpvars(0, tb_top_uart_rx_tx);
// Attendre un peu
#(20 * 10);
// Envoi d'une valeur
data_in = 8'hA5; // Exemple de data
start = 1;
#20;
start = 0;
// Attendre la réception (valeur valid = 1)
wait(valid == 1);
// Affichage des résultats
$display("Data envoyee : 0x%h", data_in);
$display("Data recue : 0x%h", data_out);
if (data_out == data_in)
$display("Test reussi !");
else
$display("Test echoue...");
// Fin de simulation
#(20 * 10);
$finish;
end
endmodule

View File

@@ -0,0 +1,64 @@
`timescale 1ns / 1ps
module tb_uart_rx;
reg clk = 0;
reg rx = 1;
wire [7:0] data;
wire valid;
wire ready;
localparam CLK_FREQ = 27_000_000;
localparam BAUD_RATE = 115_200;
localparam BIT_PERIOD = CLK_FREQ / BAUD_RATE;
localparam CLK_PERIOD_NS = 1000000000 / CLK_FREQ;
uart_rx #(
.CLK_FREQ(CLK_FREQ),
.BAUD_RATE(BAUD_RATE)
) rx_instance (
.clk(clk),
.rx(rx),
.data(data),
.valid(valid),
.ready(ready)
);
always #(CLK_PERIOD_NS/2) clk = ~clk;
task send_bit(input reg b);
begin
rx <= b;
#(BIT_PERIOD * CLK_PERIOD_NS);
end
endtask
integer i;
task send_byte(input [7:0] byte);
begin
send_bit(0);
for (i = 0; i < 8; i = i + 1)
send_bit(byte[i]);
send_bit(1);
#(BIT_PERIOD * CLK_PERIOD_NS);
end
endtask
initial begin
$display("Start UART RX test");
#100;
send_byte(8'b01010101);
#(10 * BIT_PERIOD * CLK_PERIOD_NS);
if (valid && data == 8'b01010101)
$display("Test ok : data = %b", data);
else
$display("Test pas ok : data = %b, valid = %b", data, valid);
$finish;
end
endmodule

View File

@@ -0,0 +1,49 @@
`timescale 1ns/1ps
module tb_uart_tx;
reg clk = 0;
reg start = 0;
reg [7:0] data = 8'h00;
wire tx;
wire busy;
always #18.5 clk = ~clk;
uart_tx #(
.CLK_FREQ(27_000_000),
.BAUD_RATE(115_200)
)tx_instance (
.clk(clk),
.start(start),
.data(data),
.tx(tx),
.busy(busy)
);
initial begin
$dumpfile("uart_tx.vcd");
$dumpvars(0, tb_uart_tx);
#100;
data <= 8'hA5; // 10100101 0xA5
start <= 1;
#37 start <= 0;
// Attendre
wait (busy == 0);
#1000;
data <= 8'h3C; // 00111100 0x3C
start <= 1;
#37 start <= 0;
wait (busy == 0);
#1000;
$stop;
end
endmodule

View File

@@ -0,0 +1,61 @@
module top_led_uart(
input wire clk,
input wire rx,
output wire tx,
output reg [5:0] leds
);
wire [7:0] data_out;
wire valid;
reg start_tx = 0;
reg [7:0] data_in = 0;
uart_top uart (
.clk(clk),
.start(start_tx),
.data_in(data_in),
.rx(rx),
.data_out(data_out),
.valid(valid),
.tx(tx)
);
reg [1:0] state = 0;
localparam IDLE = 2'd0;
localparam TOGGLE = 2'd1;
localparam SEND_BACK = 2'd2;
always @(posedge clk) begin
case (state)
INIT: begin
leds <= 6'b000000;
start_tx <= 0;
if (valid) begin
leds <= data_out[5:0];
state <= SEND_BACK;
end
end
IDLE: begin
start_tx <= 0;
if (valid) begin
leds <= data_out[5:0];
state <= SEND_BACK;
end
end
SEND_BACK: begin
data_in <= data_out;
start_tx <= 1;
state <= TOGGLE;
end
TOGGLE: begin
start_tx <= 0;
state <= IDLE;
end
endcase
end
endmodule

View File

@@ -0,0 +1,133 @@
module top_uart_ultrasonic (
input wire clk,
input wire rst_p,
input wire start, // Démarrage de la mesure
inout wire sig, // Signal vers le capteur ultrason
output wire uart_tx // TX vers le PC
);
wire [15:0] distance;
wire [2:0] state;
reg [7:0] tx_data_in;
reg tx_data_valid;
wire tx_data_ready;
wire fifo_empty;
wire fifo_full;
wire uart_ready;
reg uart_start;
reg [7:0] uart_data;
reg [1:0] send_state;
localparam IDLE = 2'd0,
SEND_HIGH = 2'd1,
SEND_LOW = 2'd2,
WAIT_UART = 2'd3;
// Instanciation du module ultrason
ultrasonic_fpga #(
.CLK_FREQ(27_000_000)
) ultrasonic_inst (
.clk(clk),
.start(start),
.sig(sig),
.distance(distance),
.state(state)
);
// Instanciation de la FIFO
tx_fifo #(
.WIDTH(8),
.DEPTH(16)
) fifo_inst (
.clk(clk),
.rst_p(rst_p),
.tx_data_in(tx_data_in),
.tx_data_valid(tx_data_valid),
.tx_data_ready(tx_data_ready),
.fifo_empty(fifo_empty),
.fifo_full(fifo_full)
);
// Instanciation de l'UART
uart_tx uart_inst (
.clk(clk),
.rst(rst_p),
.tx_start(uart_start),
.tx_data(uart_data),
.tx(uart_tx),
.tx_ready(uart_ready)
);
reg [15:0] distance_reg;
reg new_distance;
// Détecte un nouveau résultat de distance
always @(posedge clk or posedge rst_p) begin
if (rst_p) begin
distance_reg <= 16'd0;
new_distance <= 1'b0;
end else begin
if (state == 3'd6 && distance != distance_reg) begin // Quand l'ultrason est à DONE
distance_reg <= distance;
new_distance <= 1'b1;
end else begin
new_distance <= 1'b0;
end
end
end
// Envoi dans la FIFO (distance sur 2 octets : high byte + low byte)
always @(posedge clk or posedge rst_p) begin
if (rst_p) begin
tx_data_in <= 8'd0;
tx_data_valid <= 1'b0;
send_state <= IDLE;
end else begin
case (send_state)
IDLE: begin
tx_data_valid <= 1'b0;
if (new_distance && !fifo_full) begin
tx_data_in <= distance_reg[15:8]; // MSB en premier
tx_data_valid <= 1'b1;
send_state <= SEND_LOW;
end
end
SEND_LOW: begin
tx_data_valid <= 1'b0;
if (tx_data_ready && !fifo_full) begin
tx_data_in <= distance_reg[7:0]; // LSB ensuite
tx_data_valid <= 1'b1;
send_state <= WAIT_UART;
end
end
WAIT_UART: begin
tx_data_valid <= 1'b0;
send_state <= IDLE;
end
default: send_state <= IDLE;
endcase
end
end
// Gestion FIFO -> UART
always @(posedge clk or posedge rst_p) begin
if (rst_p) begin
uart_start <= 1'b0;
uart_data <= 8'd0;
end else begin
uart_start <= 1'b0; // Par défaut
if (uart_ready && !fifo_empty) begin
uart_data <= fifo_inst.fifo_mem[fifo_inst.rd_ptr]; // Lecture de la FIFO
uart_start <= 1'b1;
fifo_inst.rd_ptr <= fifo_inst.rd_ptr + 1;
fifo_inst.fifo_count <= fifo_inst.fifo_count - 1;
end
end
end
endmodule

View File

@@ -0,0 +1,57 @@
module tx_fifo #(
parameter WIDTH = 8, // Taille des données (8 bits)
parameter DEPTH = 16 // Taille de la FIFO
)(
input wire clk,
input wire rst_p,
// Entrée utilisateur
input wire [WIDTH-1:0] tx_data_in,
input wire tx_data_valid, // Donnée disponible à écrire
output wire tx_data_ready, // FIFO prête à recevoir
// Sortie vers UART
output reg [WIDTH-1:0] tx_data_out,
input wire uart_tx_ready, // UART demande une donnée
output reg fifo_empty,
output reg fifo_full
);
reg [WIDTH-1:0] fifo_mem [DEPTH-1:0];
reg [4:0] wr_ptr = 0;
reg [4:0] rd_ptr = 0;
reg [4:0] fifo_count = 0;
always @(posedge clk or posedge rst_p) begin
if (rst_p) begin
wr_ptr <= 0;
rd_ptr <= 0;
fifo_count <= 0;
fifo_empty <= 1;
fifo_full <= 0;
tx_data_out <= 0;
end else begin
// Écriture dans FIFO
if (tx_data_valid && !fifo_full) begin
fifo_mem[wr_ptr] <= tx_data_in;
wr_ptr <= wr_ptr + 1;
fifo_count <= fifo_count + 1;
end
// Lecture depuis FIFO
if (uart_tx_ready && !fifo_empty) begin
tx_data_out <= fifo_mem[rd_ptr];
rd_ptr <= rd_ptr + 1;
fifo_count <= fifo_count - 1;
end
// Mise à jour des flags
fifo_empty <= (fifo_count == 0);
fifo_full <= (fifo_count == DEPTH);
end
end
// FIFO est prête à recevoir des données si pas pleine
assign tx_data_ready = !fifo_full;
endmodule

145
Semaine_3/UARTV2/uart_rx.v Normal file
View File

@@ -0,0 +1,145 @@
module uart_rx #(
parameter CLK_FREQ = 27_000_000,
parameter BAUD_RATE = 115200
)(
input clk, //clock input
input rst_p, //asynchronous reset input, high active
input rx_data_ready, //data receiver module ready
input rx_pin, //serial data input
output reg[7:0] rx_data, //received serial data
output reg rx_data_valid //received serial data is valid
);
localparam CYCLE = CLK_FREQ * / BAUD_RATE;
//state machine code
localparam S_IDLE = 1;
localparam S_START = 2; //start bit
localparam S_REC_BYTE = 3; //data bits
localparam S_STOP = 4; //stop bit
localparam S_DATA = 5;
reg[2:0] state;
reg[2:0] next_state;
reg rx_d0; //delay 1 clock for rx_pin
reg rx_d1; //delay 1 clock for rx_d0
wire rx_negedge; //negedge of rx_pin
reg[7:0] rx_bits; //temporary storage of received data
reg[15:0] cycle_cnt; //baud counter
reg[2:0] bit_cnt; //bit counter
assign rx_negedge = rx_d1 && ~rx_d0; // Front déscendant
always@(posedge clk or negedge rst_p) // Filtrage du signial
begin
if(rst_p == 1'b1)begin
rx_d0 <= 1'b0;
rx_d1 <= 1'b0;
end else begin
rx_d0 <= rx_pin;
rx_d1 <= rx_d0;
end
end
always@(posedge clk or negedge rst_p)begin // Compteur d'etat
if(rst_p == 1'b1)
state <= S_IDLE;
else
state <= next_state;
end
always@(*)begin
case(state)
S_IDLE:
if(rx_negedge) // Detection du start bit
next_state = S_START;
else
next_state = S_IDLE;
S_START:
if(cycle_cnt == CYCLE - 1) //one data cycle
next_state = S_REC_BYTE;
else
next_state = S_START;
S_REC_BYTE:
if(cycle_cnt == CYCLE - 1 && bit_cnt == 3'd7) //receive 8bit data
next_state = S_STOP;
else
next_state = S_REC_BYTE;
S_STOP:
if(cycle_cnt == CYCLE/2 - 1) //half bit cycle,to avoid missing the next byte receiver
next_state = S_DATA;
else
next_state = S_STOP;
S_DATA:
if(rx_data_ready) //data receive complete
next_state = S_IDLE;
else
next_state = S_DATA;
default:
next_state = S_IDLE;
endcase
end
always@(posedge clk or negedge rst_p)
begin
if(rst_p == 1'b1)
rx_data_valid <= 1'b0;
else if(state == S_STOP && next_state != state)
rx_data_valid <= 1'b1;
else if(state == S_DATA && rx_data_ready)
rx_data_valid <= 1'b0;
end
always@(posedge clk or negedge rst_p)
begin
if(rst_p == 1'b1)
rx_data <= 8'd0;
else if(state == S_STOP && next_state != state)
rx_data <= rx_bits;//latch received data
end
always@(posedge clk or negedge rst_p)
begin
if(rst_p == 1'b1)
begin
bit_cnt <= 3'd0;
end
else if(state == S_REC_BYTE)
if(cycle_cnt == CYCLE - 1)
bit_cnt <= bit_cnt + 3'd1;
else
bit_cnt <= bit_cnt;
else
bit_cnt <= 3'd0;
end
always@(posedge clk or negedge rst_p)
begin
if(rst_p == 1'b1)
cycle_cnt <= 16'd0;
else if((state == S_REC_BYTE && cycle_cnt == CYCLE - 1) || next_state != state)
cycle_cnt <= 16'd0;
else
cycle_cnt <= cycle_cnt + 16'd1;
end
//receive serial data bit data
always@(posedge clk or negedge rst_p)
begin
if(rst_p == 1'b1)
rx_bits <= 8'd0;
else if(state == S_REC_BYTE && cycle_cnt == CYCLE/2 - 1)
rx_bits[bit_cnt] <= rx_pin;
else
rx_bits <= rx_bits;
end
endmodule

View File

@@ -0,0 +1,86 @@
module uart_top(
input wire clk,
input wire rst,
input wire uart_rx,
output wire uart_tx,
// Interfaces RX vers utilisateur
output wire [7:0] rx_data,
output wire rx_data_valid,
input wire rx_data_ready,
// Interfaces TX depuis utilisateur
input wire [7:0] tx_data,
input wire tx_data_valid,
output wire tx_data_ready
);
parameter CLK_FRE = 27_000_000; // Hz
parameter UART_FRE = 115200; // Baudrate
// === Signaux internes ===
wire [7:0] uart_rx_data;
wire uart_rx_data_valid;
wire uart_rx_data_ready;
wire [7:0] uart_tx_data;
wire uart_tx_data_valid;
wire uart_tx_data_ready;
// === FIFO RX ===
rx_fifo #(
.WIDTH(8),
.DEPTH(16)
) rx_fifo_inst (
.clk (clk),
.rst_p (rst),
.rx_data_in (uart_rx_data),
.rx_data_valid (uart_rx_data_valid),
.rx_data_out (rx_data),
.rx_data_ready (rx_data_ready),
.fifo_empty (), // pas utilisé ici
.fifo_full ()
);
// === FIFO TX ===
tx_fifo #(
.WIDTH(8),
.DEPTH(16)
) tx_fifo_inst (
.clk (clk),
.rst_p (rst),
.tx_data_in (tx_data),
.tx_data_valid (tx_data_valid),
.tx_data_ready (tx_data_ready),
.tx_data_out (uart_tx_data),
.uart_tx_ready (uart_tx_data_ready)
);
// === Instanciation RX UART ===
uart_rx #(
.CLK_FRE(CLK_FRE),
.BAUD_RATE(UART_FRE)
) uart_rx_inst (
.clk (clk),
.rst_p (rst),
.rx_data (uart_rx_data),
.rx_data_valid (uart_rx_data_valid),
.rx_data_ready (uart_rx_data_ready),
.rx_pin (uart_rx)
);
// === Instanciation TX UART ===
uart_tx #(
.CLK_FRE(CLK_FRE),
.BAUD_RATE(UART_FRE)
) uart_tx_inst (
.clk (clk),
.rst_p (rst),
.tx_data (uart_tx_data),
.tx_data_valid (uart_tx_data_valid),
.tx_data_ready (uart_tx_data_ready),
.tx_pin (uart_tx)
);
endmodule

133
Semaine_3/UARTV2/uart_tx.v Normal file
View File

@@ -0,0 +1,133 @@
module uart_tx #(
parameter CLK_FREQ = 27_000_000,
parameter BAUD_RATE = 115200
)(
input wire clk,
input wire rst_p,
input wire[7:0] data,
input wire tx_data_valid,
output wire tx,
output reg tx_data_ready
);
localparam CYCLE = CLK_FREQ / BAUD_RATE;
localparam IDLE = 2'd0;
localparam START = 2'd1;
localparam DATA = 2'd2;
localparam STOP = 2'd3;
reg [1:0] state = IDLE;
reg [1:0] next_state;
reg [15:0] cycle_cnt; //baud counter
reg [3:0] bit_index = 0;
reg [15:0] clk_count = 0;
reg [7:0] tx_data = 0;
reg tx_reg;
assign tx = tx_reg;
always@(posedge clk or posedge rst_p)begin // Avance d'etat
if(rst_p == 1'b1)
state <= IDLE;
else
state <= next_state;
end
always@(*) begin
case(state)
IDLE:
if(tx_data_valid == 1'b1)
next_state = START;
else
next_state = IDLE;
START:
if(cycle_cnt == CYCLE - 1)
next_state = DATA;
else
next_state = START;
DATA:
if(cycle_cnt == CYCLE - 1 && bit_cnt == 3'd7)
next_state = STOP;
else
next_state = DATA;
STOP:
if(cycle_cnt == CYCLE - 1)
next_state = IDLE;
else
next_state = STOP;
default:
next_state = IDLE;
endcase
end
always@(posedge clk or posedge rst_p)begin // tx_data_ready block
if(rst_p == 1'b1)
begin
tx_data_ready <= 1'b0;
end
else if(state == IDLE)
if(tx_data_valid == 1'b1)
tx_data_ready <= 1'b0;
else
tx_data_ready <= 1'b1;
else if(state == STOP && cycle_cnt == CYCLE - 1)
tx_data_ready <= 1'b1;
end
always@(posedge clk or posedge rst_p) begin // tx_data_latch block
if(rst_p == 1'b1)begin
tx_data_latch <= 8'd0;
end else if(state == IDLE && tx_data_valid == 1'b1)
tx_data_latch <= tx_data;
end
always@(posedge clk or posedge rst_p)begin // DATA bit_cnt block
if(rst_p == 1'b1)begin
bit_cnt <= 3'd0;
end else if(state == DATA)
if(cycle_cnt == CYCLE - 1)
bit_cnt <= bit_cnt + 3'd1;
else
bit_cnt <= bit_cnt;
else
bit_cnt <= 3'd0;
end
always@(posedge clk or posedge rst_p)begin // Cycle counter
if(rst_p == 1'b1)
cycle_cnt <= 16'd0;
else if((state == DATA && cycle_cnt == CYCLE - 1) || next_state != state)
cycle_cnt <= 16'd0;
else
cycle_cnt <= cycle_cnt + 16'd1;
end
always@(posedge clk or posedge rst_p)begin // tx state managment
if(rst_p == 1'b1)
tx_reg <= 1'b1;
else
case(state)
IDLE,STOP:
tx_reg <= 1'b1;
START:
tx_reg <= 1'b0;
DATA:
tx_reg <= tx_data_latch[bit_cnt]; // SENDING BYTE HERE
default:
tx_reg <= 1'b1;
endcase
end
endmodule